
EX-1© Gunnar Gotshalks

Example programs

Showing things to look for

EX-2© Gunnar Gotshalks

Infinite loops

◊ Avoid circular definitions
 parent (A, B) :- child (B, A).
 child (C, D) :- parent (D, C).

◊ Easy to see here but as database grows you can forget
what is in it and circularity can creep in

EX-3© Gunnar Gotshalks

Infinite loops – Left Recursion – 1

◊ Left recursion can cause problems
 person (X) :- person (Y) , mother (Y, X).
 person (eve).

» The query person (P) loops indefinitely as the
first rule is found first on every recursive call.

» Second rule is only tried if first rule fails

◊ Reordering the rules will correct the problem if only the
first answer is wanted.

Heuristic
Put facts before rules

EX-4© Gunnar Gotshalks

Infinite loops – Left Recursion – 2

◊ Left recursion can cause problems – continued
 person (eve).
 person (X) :- person (Y) , mother (Y, X).

» Assuming mother fails, the query person (P)
loops indefinitely after P = eve

◊ Left recursion is the problem

Do not assume Prolog will find the facts and rules.
Need to know how searching works

EX-5© Gunnar Gotshalks

Multiple answers – isList, weakList

◊ The textbook gives the following predicate but loops
forever on the query isList (X).

 isList ([A | B]) :- isList (B).
isList ([]).

◊ It can be defined just as well by putting the fact first.
 isList ([]).
 isList ([A | B]) :- isList (B).

◊ But gives more than one answer for the query isList (X)
but does not loop forever.

◊ For the latter query, to have only one answer, can assert
the following.

 weak_isList ([]).
weak_isList ([_ | _]).

EX-6© Gunnar Gotshalks

Why is weak_isList weak?

◊ The strong definition says a list must have the correct
structure and must end in nil.

◊ The weak definition simply says the list must have the
correct structure for one level and says nothing about nil
except for the empty list.

◊ For example – recall [...] is shorthand for the structure
.(...)

 isList (.(a , [])). ==> yes
isList (.(a , .(b , []))). ==> yes
isList (.(a , .(b, .(c , [])))). ==> yes
isList (.(a , b)). ==> no
isList (.(a , .(b , c , []))). ==> no

◊ But all responses are yes for weak_isList

EX-7© Gunnar Gotshalks

Mapping

◊ Consider the problem of translating a sentence from one
form to another
» For example as in the following "dialogue" the

second sentence is a translation of the preceding
sentence

> you are a computer
I am not a computer

> do you speak french
no I speak german

» Assume the following simplistic translations
> you ==> I

are ==> am not
do ==> no
french ==> german

EX-8© Gunnar Gotshalks

Mapping – 2

◊ Let us represent sentences as a list of words
 you are a computer ==> [you , are , a , computer]

◊ We represent the list of words to change as a set of
change rules

 change (you , I).
 change (are , [am , not]).
 change (french , german).
 change (do , no).
 change (X , X). /* catch all to make no

 changes */

EX-9© Gunnar Gotshalks

Mapping – 3

◊ Then the translation rules can be the following.
 alter([] , []).

alter ([H | T] , [X | Y]) :- change (H, X) , alter (T, Y).

◊ Then we can translate our example sentences
 alter ([you, are, a, computer] , Trans).

> Trans = [I , am , not , a , computer]
» Try using ;<return> on the above. Explain why there

are multiple answers. Try a trace to see what is
happening.

> We need a method to prevent multiple answers

EX-10© Gunnar Gotshalks

Mapping – 4

◊ Try the inverse – with ;<return>
 alter (Org , [I , am , not , a , computer]).

◊ Try a variable – with ; <return>
 alter ([you , are , a , X] , Trans)

EX-11© Gunnar Gotshalks

Warning – Caution – Danger

 Logic and a finite database
 can lead to strange

 and unexpected results.
 Use with extreme caution.

