
MV-1© Gunnar Gotshalks

Multiple Value Functions

 WIlensky Chapter 16.4

MV-2© Gunnar Gotshalks

Multiple value functions

◊ In other languages one can pass multiple parameters to
return multiple values (though not function values) on one
call
» In Pascal, Turing use var - to change the parameter

directly
» In ADA declare a parameter as output

◊ In Lisp all parameters are passed by value – they cannot be
changed

◊ To return multiple values you need to construct a list of the
results you want the function to return and the caller must
extract, through car and cdr, the values of interest

◊ This occurs frequently enough that Lisp permits multiple
values to be returned by a function.

MV-3© Gunnar Gotshalks

Catching multiple values

◊ By default, if a function returns multiple values, only one is
passed back – the rest are discarded – unless you
specifically ask for the other values

◊ For example (round aNumber) returns two values – the
rounded value and the value needed to add to the
rounded result to get the original number
 (round aNumber) ==> roundedValue difference

> where difference = aNumber - roundedValue
 (round 7.6) ==> 8 -0.4

> Not a list! (car (round 7.6)) fails
> (print (round 7.6)) ==> 8

use first value by default

MV-4© Gunnar Gotshalks

Catching multiple values – 2

◊ Use the following macro to create a list of multiple value
returns
 (multiple-value-list (round aNumber))
 ==> (roundedValue restoreNumber)

 (multiple-value-list (round 7.6)) ==> (8 -0.4)

◊ Can assign the values to symbols using the following
macro
 (multiple-value-setq (val diff) (round 7.6))

> 8 ==> val and -0.4 ==> diff
> Note setq implies global symbol

MV-5© Gunnar Gotshalks

Catching multiple values – 3

◊ Can create a local context for variables instead of using
globals
 (let ((val nil) (diff nil))
 (multiple-value-setq (val diff) (round 7.6))
 ;; ... use val and diff in list of forms
 (print val)
 (print diff)
 (print (+ val diff))
)

> setq actually uses the closest symbol in the
environment
– The first one found

MV-6© Gunnar Gotshalks

Catching multiple values – 3a

◊ The following shows that let is syntactic sugar for a
lambda function
 ((lambda (val diff)
 (multiple-value-setq (val diff) (round 7.6))
 ;; ... use val and diff in list of forms
 (print val)
 (print diff)
 (print (+ val diff))
)
 nil nil ; initial values for val & diff
)

MV-7© Gunnar Gotshalks

Examine multiple-value-setq

◊ Use macroexpand-1
 (macroexpand-1
 '(multiple-value-setq (val diff) (round 7.6))
)

(let* ((#:g6 (multiple-value-list (round 7.6)))
 (#:g7 (car #:g6)))
 (setq val (nth 0 #:g6))
 (setq diff (nth 1 #:g6))
 #:g7
)

◊ #:g6 and #:g7 are symbols generated by the macro. They
are local to the let* form

MV-8© Gunnar Gotshalks

Catching multiple values – 4

◊ Instead of using let which needs initial values for its
parameters, can use the following
 (multiple-value-bind (val diff) (round 7.6)
 ;; ... list of forms using val and diff ...
 (print val)
 (print diff)
 (print (+ val diff))
)

MV-9© Gunnar Gotshalks

Catching multiple values – 5

◊ Can use the following to pass the return values to a
function

> Its arity equals the number of returned values
 (multiple-value-call #'functionName (round 7.6))

 (defun functionName (val diff)
 (print val) (print diff) (print (+ val diff))
)

MV-10© Gunnar Gotshalks

Throwing multiple values

◊ The last form in a function is a call to values
 (values 1 2 3) ==> 1 2 3

◊ Here is a function to tear a list into its first and rest parts
 (defun unCons (theList)

 (values (car theList) (cdr theList))
)

 (uncons '(a b c)) ==> a (b c)

◊ What about unconsing an entire list? Use apply to strip
the outer level of parenthesis
 (apply 'values '(a b c d e)) ==> a b c d e

◊ Why would one want uncons?

