
LC-1© Gunnar Gotshalks

Lambda Calculus

LC-2© Gunnar Gotshalks

λ− Calculus History

◊ Developed by Alonzo Church during 1930’s-40’s

◊ One fundamental goal was to describe what can be
computed.

◊ Full definition of λ-calculus is equivalent in power to a
Turing machine
» Turing machines and λ-calculus are alternate

descriptions of our understanding of what is
computable

LC-3© Gunnar Gotshalks

λ− Calculus History – 2

◊ In the mid to late 1950’s, John McCarthy developed Lisp
» A programming language based on λ-calculus
» Implementation includes syntactic sugar

> functions and forms that do not add to the
power of what we can compute but make
programs simpler and easier to understand

LC-4© Gunnar Gotshalks

λ− Calculus Basis

◊ Mathematical theory for anonymous functions
» functions that have not been bound to names

◊ Present a subset of full definition to present the flavour

◊ Notation and interpretation scheme identifies
» functions and their application to operands

> argument-parameter binding
» Clearly indicates which variables are free and

which are bound

LC-5© Gunnar Gotshalks

Bound and Free Variables

◊ Bound variables are similar to local variables in Java
function (or any procedural language)
» Changing the name of a bound variable

(consistently) does not change the semantics
(meaning) of a function

◊ Free variables are similar to global variables in Java
function (or any procedural language)
» Changing the name of a free variable normally

changes the semantics (meaning) of a function.

LC-6© Gunnar Gotshalks

◊ Consider following expression
» (u + 1) (u – 1)
» is u bound or free?

◊ Disambiguate the expression with the following λ-function
» (λ u . (u + 1) (u – 1))

» Clearly indicates that u is a bound variable

◊ Note the parallel with programming language functions
» functionName (arguments) { function definition }

– It seems obvious now but that is because programming
languages developed out of these mathematical notions

λ−functions – 1

bound variables defining form

LC-7© Gunnar Gotshalks

λ−functions – 2

◊ Consider the following expression
» (u + a) (u + b)

◊ Can have any of the following functions, depending on
what you mean
» (λ u . (u + a) (u + b))

> u is bound, a and b are free (defined in the
enclosing context)

» (λ u, b . (u + a) (u + b))
> u and b are bound, a is free

» (λ u, a, b . (u + a) (u + b))
> u, a and b are all bound, no free variables in the

expression

LC-8© Gunnar Gotshalks

Function application

◊ Functions are applied to arguments in a list immediately
following the l-function
» { λ u . (u + 1) (u + 2) } [3]

> 3 ==> u then ==> (3 + 1) (3 + 2) ==> 20
» { λ u . (u + a) (u + b) } [7 – 1]

> 7–1 ==> u then ==> (6 + a) (6 + b)
and no further in this context

» {λ u, v . (u – v) (u + v) } [2p + q , 2p - q]
> ==> ((2p+q) – (2p - q)) ((2p + q) + (2p – q))
> Can pass expressions to a variable

◊ Can use different bracketing symbols for visual clarity;
they all mean the same thing.

LC-9© Gunnar Gotshalks

Using auxiliary definitions

◊ Build up longer definitions with auxiliary definitions
» Define u / (u + 5)

where u = a (a + 1)
 where a = 7 – 3

 { λ u . u / (u + 5) } [{ λ a . a (a + 1) } [7 – 3]]

> Note the nested function definition and
argument application

 ==> { λ u . u / (u + 5) } [4 (4 + 1)]
 ==> { 20 / (20 + 5) }
 ==> 0.8

LC-10© Gunnar Gotshalks

Functions are Variables

◊ Define f (3) + f (5)
 where f (x) = a x (a + x)
 where a = 4
 { λ f . f (3) + f (5) } [{ λ a . { λ x . a x (a + x) } } [4]]

◊ Arguments must be evaluated first
 ==> { λ f . f (3) + f (5) } [{ λ x . 4 x (4 + x) }]

 ==> { λ x . 4 x (4 + x) } (3) + { λ x . 4 x (4 + x) } (5)

 ==> 4 * 3 (4 + 3) + 4 * 5 (4 + 5) ==> 264

LC-11© Gunnar Gotshalks

Lamba notation in Lisp

◊ Lambda expressions are a direct analogue of λ-calculus
expressions
» They are the basis of Lisp functions – a modified

syntax to simplify the interpreter

◊ For example
 (defun double (x) (+ x x))

> is the named version of the following unnamed
lambda expression

 (lambda (x) (+ x x)) ––– { λ x . (x + x) }
> Note the similar syntax with λ-calculus and the

change to prefix, from infix, to permit a uniform
syntax for functions of any number of
arguments

LC-12© Gunnar Gotshalks

Anonymous functions

◊ Recall in the abstraction for sumint we defined support
functions to handle each case
 (defun double (int) (+ int int))

 (defun square (int) (* int int))

 (defun identity (int) int)

◊ This adds additional symbols we may not want, especially
if the function is to be used only once.

◊ Using lambda we get the same effect without adding
symbols
 (sumint #‘(lambda (int) (+ int int)) 10)

 (sumint #‘(lambda (int) (* int int)) 10)

 (sumint #‘(lambda (int) int) 10)

LC-13© Gunnar Gotshalks

The function ‘function’

◊ What is the meaning of #’ in the following
 (sumint #‘(lambda (int) (+ int int)) 10)

◊ It is a short hand
» #’(...) ==> (function (...))

◊ One of its attributes is it works like quote, in that its
argument is not evaluated, thus, in this simple context the
following will also work
 (sumint ‘(lambda (int) (+ int int)) 10)

◊ Later we will see another attribute of function that makes
it different from quote.

◊ Whenever a function is to be quoted use #’ in place of ’

LC-14© Gunnar Gotshalks

Recursion

◊ Recursion with lambda functions uses labels to
temporarily name a function

◊ The following is a general λ-calculus template.
> The name is in scope within the entire body but is

out of scope outside of the lambda expression.

{ label name (lambda arguments .
 body_references_name) }

◊ In Lisp can use labels to define a mutually recursive set of
functions
 (labels (list of named lambda expressions)

 sequence of forms using the temporarily named
 functions
)

LC-15© Gunnar Gotshalks

Example 1 of recursion

◊ A recursive multiply that uses only addition.
> The temporary function is called mult
> Use quote not function – using eval

 (eval '(labels
 ((mult (k n)
 (cond ((zerop n) 0)
 (t (+ k (mult k (1- n))))
)))
 (mult 2 3)
)
)

LC-16© Gunnar Gotshalks

Example 2 of recursion

◊ recTimes computes k * n by supplying the paramters to
a unary function that is a variation of example 1.

 (defun recTimes (k n)
 (labels ((temp (n)
 (cond ((zerop n) 0)
 (t (+ k (temp (1- n))))
)))
 (temp n)
))

