Lambda Calculus

© Gunnar Gotshalks

λ– Calculus History

- Oeveloped by Alonzo Church during 1930's-40's
- One fundamental goal was to describe what can be computed.
- Full definition of λ-calculus is equivalent in power to a Turing machine
 - » Turing machines and λ-calculus are alternate descriptions of our understanding of what is computable

λ – Calculus History – 2

- In the mid to late 1950's, John McCarthy developed Lisp
 - » A programming language based on λ -calculus
 - » Implementation includes syntactic sugar
 - > functions and forms that do not add to the power of what we can compute but make programs simpler and easier to understand

λ – Calculus Basis

- Mathematical theory for anonymous functions
 » functions that have not been bound to names
- Present a subset of full definition to present the flavour
- Notation and interpretation scheme identifies
 - Functions and their application to operands
 argument-parameter binding
 - » Clearly indicates which variables are free and which are bound

Bound and Free Variables

- Bound variables are similar to local variables in Java function (or any procedural language)
 - Changing the name of a bound variable (consistently) does not change the semantics (meaning) of a function
- Free variables are similar to global variables in Java function (or any procedural language)
 - » Changing the name of a free variable normally changes the semantics (meaning) of a function.

λ -functions – 1

- Onsider following expression
 - » (u+1)(u-1)
 - » is u bound or free?
- \diamond Disambiguate the expression with the following λ -function

$$> (\lambda u . (u+1)(u-1))$$

bound variables

defining form

» Clearly indicates that u is a bound variable

Note the parallel with programming language functions

» functionName (arguments) { function definition }

 It seems obvious now but that is because programming languages developed out of these mathematical notions

λ -functions – 2

Consider the following expression

```
» (u+a)(u+b)
```

- Can have any of the following functions, depending on what you mean
 - » (λu . (u + a)(u + b))

> u is bound, a and b are free (defined in the enclosing context)

» ($\lambda u, b$. (u + a)(u + b))

> u and b are bound, a is free

» (λ u, a, b . (u + a)(u + b))

> u, a and b are all bound, no free variables in the expression

Function application

- Functions are applied to arguments in a list immediately following the I-function
- Can use different bracketing symbols for visual clarity; they all mean the same thing.

Using auxiliary definitions

- Observation Build up longer definitions with auxiliary definitions
 - » Define u/(u+5)
 where u = a(a+1)
 where a = 7 3

```
\{\lambda u . u / (u + 5)\} [\{\lambda a . a (a + 1)\} [7 - 3]]
```

```
> Note the nested function definition and
argument application
==> { λ u . u / (u + 5 ) } [ 4 ( 4 + 1 ) ]
==> { 20 / ( 20 + 5 ) }
==> 0.8
```

Functions are Variables

 $\mathbf{\nabla}$

Lamba notation in Lisp

- Lambda expressions are a direct analogue of λ-calculus expressions
 - » They are the basis of Lisp functions a modified syntax to simplify the interpreter
- ♦ For example

(defun double (x) (+ x x))

> is the named version of the following unnamed lambda expression

 $(lambda(x)(+xx)) - {\lambda x.(x+x)}$

> Note the similar syntax with λ-calculus and the change to prefix, from infix, to permit a uniform syntax for functions of any number of arguments

Anonymous functions

 Recall in the abstraction for sumint we defined support functions to handle each case

(defun double (int) (+ int int))
(defun square (int) (* int int))
(defun identity (int) int)

- This adds additional symbols we may not want, especially if the function is to be used only once.
- Using lambda we get the same effect without adding symbols

```
(sumint #'(lambda (int) (+ int int)) 10)
(sumint #'(lambda (int) (* int int)) 10)
(sumint #'(lambda (int) int) 10)
```

The function 'function'

- What is the meaning of #' in the following (sumint #'(lambda (int) (+ int int)) 10)
- It is a short hand

» #'(...) ==> (function (...))

One of its attributes is it works like quote, in that its argument is not evaluated, thus, in this simple context the following will also work

```
(sumint '(lambda (int) (+ int int)) 10)
```

- Later we will see another attribute of **function** that makes it different from **quote**.
- Whenever a function is to be quoted use # ' in place of '

Recursion

- Recursion with lambda functions uses labels to temporarily name a function
- \diamond The following is a general λ -calculus template.

> The name is in scope within the entire body but is out of scope outside of the lambda expression.

In Lisp can use labels to define a mutually recursive set of functions

(labels (list of named lambda expressions) sequence of forms using the temporarily named functions

Example 1 of recursion

♦ A recursive multiply that uses only addition.

- > The temporary function is called mult
- > Use quote not function using eval

Example 2 of recursion

recTimes computes k * n by supplying the paramters to a unary function that is a variation of example 1.