Lambda Calculus

λ - Calculus History

\diamond Developed by Alonzo Church during 1930's-40's
\diamond One fundamental goal was to describe what can be computed.
\diamond Full definition of λ-calculus is equivalent in power to a Turing machine
" Turing machines and λ-calculus are alternate descriptions of our understanding of what is computable

λ - Calculus History - 2

\diamond In the mid to late 1950's, John McCarthy developed Lisp
" A programming language based on λ-calculus
» Implementation includes syntactic sugar
$>$ functions and forms that do not add to the power of what we can compute but make programs simpler and easier to understand

λ - Calculus Basis

\diamond Mathematical theory for anonymous functions
» functions that have not been bound to names
\diamond Present a subset of full definition to present the flavour
\diamond Notation and interpretation scheme identifies
» functions and their application to operands
> argument-parameter binding
» Clearly indicates which variables are free and which are bound

Bound and Free Variables

\diamond Bound variables are similar to local variables in Java function (or any procedural language)
> Changing the name of a bound variable (consistently) does not change the semantics (meaning) of a function
\diamond Free variables are similar to global variables in Java function (or any procedural language)
> Changing the name of a free variable normally changes the semantics (meaning) of a function.

λ-functions - 1

\diamond Consider following expression
> ($u+1$) (u-1)
" is u bound or free?
\diamond Disambiguate the expression with the following λ-function

> Clearly indicates that u is a bound variable
\diamond Note the parallel with programming language functions » functionName (arguments) \{ function definition \}

- It seems obvious now but that is because programming languages developed out of these mathematical notions

λ-functions - 2

\diamond Consider the following expression
> (u + a) (u + b)
\diamond Can have any of the following functions, depending on what you mean

$$
\begin{aligned}
& >(\lambda u \cdot(u+a)(u+b)) \\
& \quad>u \text { is bound, } a \text { and } b \text { are free (defined in the } \\
& \quad \text { enclosing context) } \\
& \gg(\lambda u, b \cdot(u+a)(u+b)) \\
& \quad>u \text { and } b \text { are bound, } a \text { is free } \\
& \gg(\lambda u, a, b \cdot(u+a)(u+b)) \\
& \quad>u \text {, a and } b \text { are all bound, no free variables in the } \\
& \quad \text { expression }
\end{aligned}
$$

Function application

\diamond Functions are applied to arguments in a list immediately following the l-function

$$
\begin{aligned}
\gg & \{\lambda u \cdot(u+1)(u+2)\}[3] \\
& >3==>u \text { then }==>(3+1)(3+2)==>20 \\
> & \{\lambda u \cdot(u+a)(u+b)\}[7-1] \\
& >7-1==>u \text { then }==>(6+a)(6+b) \\
& \text { and no further in this context } \\
\gg & \{\lambda u, v \cdot(u-v)(u+v)\}[2 p+q, 2 p-q] \\
& >==>((2 p+q)-(2 p-q))((2 p+q)+(2 p-q)) \\
& >\text { Can pass expressions to a variable }
\end{aligned}
$$

\diamond Can use different bracketing symbols for visual clarity; they all mean the same thing.

Using auxiliary definitions

\diamond Build up longer definitions with auxiliary definitions
> Define u/(u+5)
where $u=a(a+1)$
where $\mathrm{a}=7$ - 3
$\{\lambda \mathbf{u} . \mathbf{u} /(\mathbf{u}+5)\}[\{\lambda \mathbf{a} \cdot \mathbf{a}(\mathbf{a}+1)\}[7-3]]$
> Note the nested function definition and argument application
$=\Rightarrow\{\lambda u . u /(u+5)\}[4(4+1)]$
$==>\{20 /(20+5)\}$
==> 0.8

Functions are Variables

\diamond Define $f(3)+f(5)$
where $f(x)=a x(a+x)$
where $a=4$

$$
\{\lambda f . f(3)+f(5)\}[\{\lambda a \cdot\{\lambda x \cdot a x(a+x)\}\}[4]]
$$

\diamond Arguments must be evaluated first

$$
\begin{align*}
& =>\{\lambda f . f(3)+f(5)\}[\{\lambda x .4 x(4+x)\}] \\
& =\Rightarrow\{\lambda x .4 x(4+x)\}(3)+\{\lambda x .4 \times(4+x)\} \tag{5}\\
& =>4 * 3(4+3)+4 * 5(4+5)=\Rightarrow 264
\end{align*}
$$

Lamba notation in Lisp

\diamond Lambda expressions are a direct analogue of λ-calculus expressions
" They are the basis of Lisp functions - a modified syntax to simplify the interpreter
\diamond For example
(defun double (x) (+x x))
$>$ is the named version of the following unnamed lambda expression
(lambda (x) (+ x x)) - $\{\lambda \mathrm{x} .(\mathrm{x}+\mathrm{x})\}$
$>$ Note the similar syntax with λ-calculus and the change to prefix, from infix, to permit a uniform syntax for functions of any number of arguments

Anonymous functions

\diamond Recall in the abstraction for sumint we defined support functions to handle each case

```
(defun double (int) (+ int int))
(defun square (int) (* int int))
(defun identity (int) int)
```

\diamond This adds additional symbols we may not want, especially if the function is to be used only once.
\diamond Using lambda we get the same effect without adding symbols

```
(sumint #"(lambda (int) (+ int int)) 10)
(sumint #'(lambda (int) (* int int)) 10)
(sumint #'(lambda (int) int) 10)
```


The function 'function'

\diamond What is the meaning of \#' in the following
(sumint \#'(lambda (int) (+ int int)) 10)
\diamond It is a short hand
》 \#' (...) ==> (function (...))
\diamond One of its attributes is it works like quote, in that its argument is not evaluated, thus, in this simple context the following will also work
(sumint "(lambda (int) (+ int int)) 10)
\diamond Later we will see another attribute of function that makes it different from quote.
\diamond Whenever a function is to be quoted use \#' in place of \quad

Recursion

\diamond Recursion with lambda functions uses labels to temporarily name a function
\diamond The following is a general λ-calculus template.
$>$ The name is in scope within the entire body but is out of scope outside of the lambda expression.
\{ label name (lambda arguments . body_references_name) \}
\diamond In Lisp can use labels to define a mutually recursive set of functions
(labels (list of named lambda expressions) sequence of forms using the temporarily named functions
)

Example 1 of recursion

\diamond A recursive multiply that uses only addition.
$>$ The temporary function is called mult
> Use quote not function - using eval
(eval ' (labels

```
((mult (k n)
    (cond ((zerop n) 0)
    (t (+ k (mult k (1- n))))
```

)))
(mult 2 3)
)
)

Example 2 of recursion

\diamond recTimes computes \mathbf{k} * \mathbf{n} by supplying the paramters to a unary function that is a variation of example 1.

```
(defun recTimes (k n)
    (labels (( temp (n)
        (cond ((zerop n) 0)
        ( t (+ k (temp (1- n))))
    )))
    (temp n)
))
```

