
LP-1© Gunnar Gotshalks

Lisp Programming

LP-2© Gunnar Gotshalks

Boolean Functions

◊ Return T for true and nil for false
» (atom item)

> is item an atom, i.e. not a cons cell
» (listp item)

> is item a list, i.e. a cons cell
» (null item)

> is item the empty list nil

◊ In general have a predicate for every type
» e.g. numberp, listp

LP-3© Gunnar Gotshalks

Logical Operators

◊ Reverse a boolean result
» (not (atom item))

◊ Combine predicates – lazy evaluation
» (and (listp a) (listp b))

> stop evaluating as soon as false is found
» (or (listp a) (listp b))

> stop evaluating as soon as true is found
» (and (listp a) (listp (car a)))

> If a is not a list then (car a) would fail
> lazy evaluation prevents this

LP-4© Gunnar Gotshalks

Conditional – cond

◊ General template
» (cond (p.1 s.1-1 s.1-2 ... s.1-p)

 (p.2 s.2-1 s.2-2 ... s.2-q)
 ...
 (p.n s.n-1 s.n-2 ... s.n-r)
)

» p.i are predicates
» s.i-k is the kʼth S-expression for predicate p.i

> Usually only one per predicate

LP-5© Gunnar Gotshalks

Conditional – cond – 2

◊ Uses lazy evaluation
» Evaulate p.i in turn, for i : 1 .. n
» For the first true p.i evaluate s.i-1 ... s.i-r

> Value of cond is value of s.i-r
» If all p.i are false, value of cond is nil

◊ Example
> note use of t = true to handle the otherwise case

» (cond ((atom a) a)
 ((atom (car a)) (print (car a)) (cdr a))
 (t (process (car a)))
)

LP-6© Gunnar Gotshalks

Conditional – example

defun assessment (grade)
 (cond ((> grade 90) 'excellent)

 ((> grade 80) 'very_good)
 ((> grade 70) 'good)
 ((> grade 60) 'fair)
 ((t 'poor)

> (assessment 72)
GOOD

> (assessment 38)
POOR

LP-7© Gunnar Gotshalks

Recursion

◊ Only looping method in pure Lisp is recursion

◊ In general, recursion involves
» taking a list apart

> (car theList) (cdr theList)
» doing recursion on the parts

> (recursiveCall (car theList))
(recursiveCall (cdr theList))

» rebuilding a new list from the parts of the old list
> (cons (recursiveCall (car theList))

 (recursiveCall (cdr theList)))
» empty list is often used used for termination

> (cond ((null theList) (do base case)) ...)

LP-8© Gunnar Gotshalks

Recursion a general template

 (defun recursive (theList otherParameters)

 (cond ((null theList) (first base case))

 ...

 ((pred1) (last base case))

 ((pred2) (first nonbase case))
 ...
 (t (last nonbase case))
))

LP-9© Gunnar Gotshalks

Recursion example 1

◊ Remove item from list only at the top level
 (defun removeTop (list item)
 (cond ((null list) nil)
 ((equal (car list) item)
 (removeTop (cdr list) item))
 (t (cons (car list)
 (removeTop (cdr list) item)))
))

LP-10© Gunnar Gotshalks

Recursion example 2

◊ Remove item from list from all levels
 (defun removeAll (list item)
 (cond ((null list) nil)
 ((equal (car list) item)

 (removeAll (cdr list) item))
 ((atom (car list))

 (cons (car list)
 (removeAll (cdr list) item)))

 (t (cons (removeAll (car list) item)
 (removeAll (cdr list) item)))

))

LP-11© Gunnar Gotshalks

Symbols are more than variables

 They have a complex structure – See notes on symbols

Symbol

From Harrison pages 30-38

Value

Name

Definition

Property list

Print name

Package

(symbol-value
 symbol)

(symbol-function
 symbol)

(symbol-plist
 symbol) (symbol-name

 symbol)

(symbol-package
 symbol)

Access Functions

LP-12© Gunnar Gotshalks

What is a Property List?

◊ Programs model the world as we see it

◊ Entities with attributes (properties in Lisp) populate the
world
» entity book with attributes author, publisher,

number of pages
» attributes have values

> author Asimov publisher ACE books pages 412

◊ Lisp models the above with
» symbol book
» property list

(author Asimov publisher ACE books pages 412)

LP-13© Gunnar Gotshalks

EBNF definition of Property Lists

◊ Property lists are attribute-value pairs all at the same list
level.

◊ EBNF for property Lists
 PropertyList ::= (nil , PropName PropValue

 PropertyList) ;
 PropName ::= any symbol ; // name of the property
 PropValue ::= any S-expression ; // its value
» Examples

> (colour red size large)
> (colour white

 change (penny 3 dime 4 looney 6 toonie 10))
» Values can themselves be property lists

LP-14© Gunnar Gotshalks

Accessing properties-1

◊ Use (get ʻsymbol ʻpropName) to access a property
value for a symbol

» Assume the symbol purse has the property list
> (colour white

 change (penny 3 dime 4 looney 6 toonie 10))

» Then
> (get ʻpurse ʻchange)
> returns the S-expression

 (penny 3 dime 4 looney 6 toonie 10)

LP-15© Gunnar Gotshalks

Accessing properties-2

◊ Use (setf (get symbol propName) value) to set a
property value
» (setf (get ʻpurse ʻcolour) ʻpink)

> changes the colour of the purse to pink
» the get returns the address of where the attribute-

value is
» or would be

> Hence new attribute-value pairs can be stored

LP-16© Gunnar Gotshalks

getf and property lists

◊ (getf prop-list ʻpropName) accesses properties as well;
the first argument is a property list.

> (setf (get ʻpurse ʻcolour) ʻpink)
> (getf (symbol-plist ʻpurse) ʻcolour) –– returns pink

◊ Property lists do not need to be associated with a symbolʼs
plist
» Any list of attibute-value pairs will do

> (setq x ʻ(colour blue change (penny 4 dime 5)))
> (getf x ʻchange) returns (penny 4 dime 5)

» Even just a property list structure will do
> (getf ʻ(colour blue change (penny 4 dime 5)) ʻchange)

returns (penny 4 dime 5)

LP-17© Gunnar Gotshalks

Association lists

◊ Like property lists

◊ Associate attributes with values

◊ Uses lists of lists
» ((colour black) (size large))

◊ First of each sublist is the property (key) and the second is
the value.

LP-18© Gunnar Gotshalks

Property List ambiguity

◊ If a property does not exist get returns nil

◊ What if a property value is nil?

LP-19© Gunnar Gotshalks

Property list ambiguity 2

 Good mathematical and programming practice is to give a
special name for nil property values.

 Could use (change none) in place of (change nil)

 Then nil would mean the property does not exists as
opposed to the value of an existing property is nil

LP-20© Gunnar Gotshalks

Property list ambiguity 3

 An alternate method that can be used to distinguish
between nil as a value and nil as no attribute.
 Use

 (get 'purse 'change 'none)
 The third argument is returned if the attribute

change is not found.

