
BLU-1© Gunnar Gotshalks

Basics of Using Lisp

BLU-2© Gunnar Gotshalks

Getting into and out of Clisp

◊ Entering % clisp

◊ Do Lisp work

◊ Exiting (bye)
» A function with no arguments
» CTRL–d can also be used

◊ Documentation files are in the directory
» /cs/local/doc/clisp

BLU-3© Gunnar Gotshalks

Do Lisp work

◊ Edit in files with extension “.lsp”

◊ Load the files
 (load 'filename.lsp)

> Loading executes the S-expressions in the file
> Loading defines symbols
> No other computational effects are seen
> Comments begin with “ ;”

◊ Interactively execute S-expressions
» Invoke functions
» Use setq to define symbol values
» Use defun to define functions

BLU-4© Gunnar Gotshalks

The Lisp Interpreter

◊ Is a loop over the following functions
» Read

> an S-expression
» Eval

> the S-expression
» Print

> the result

◊ You can redefine these functions !!!
» But it is dangerous if you do not know what you

are doing.

BLU-5© Gunnar Gotshalks

◊ Free variable
> global variable defined at the upper level

(outside of function definitions)
» Within a function consistently changing the name

of a free variable will normally alter the semantics
of the function

 (defun x (a) (+ a y))

 is NOT the same as

 (defun x (a) (+ a z))

Free and bound variables

BLU-6© Gunnar Gotshalks

Bound variables

◊ Bound variable
> local variable defined in the parameter list of a

function
» Within a function consistently changing the name

of a bound variable will not alter the semantics of
the function

 (defun x (a y) (+ a y))

is the same as

 (defun x (a z) (+ a z))

BLU-7© Gunnar Gotshalks

Static & Dynamic scoping

◊ Consider the following
 (defun f1 (v1) (f2 v1)) ;; v1 defined – argument
 (defun f2 (v2) (1+ v1)) ;; is v1 defined?
 (f1 7)

◊ Under static (lexical) scoping invoking (f1 7) produces
an error as v1 is undefined in f2

◊ Under dynamic scoping v1 in f2 is defined because f2 is
executed in the environment of f1 in which v1 is defined
» Dynamic scoping leads to the funarg problem as

function arguments can shadow (hide) global
variables

BLU-8© Gunnar Gotshalks

Execution Environment

◊ An environment consists of binding between a set of
symbols and their values
 ((A 1) (B 5) ... (D (a b c)))

◊ At the interpreter level global symbols are created, using
setq or defun, giving a global environment

◊ The value of a symbol is looked up in the environment

◊ Evaluating a function causes the parameters to be
prepended to the appropriate environment
» Evaluating (f1 3) defined as (defun f1 (v1) (f2 v1))
» creates the environment

((v1 3) (A 1) (B 5) ... (D (a b c)))

BLU-9© Gunnar Gotshalks

Execution Environment – 2

◊ We evaluate (f2 v1) in the context
 ((v1 3) (A 1) (B 5) ... (D (a b c)))

◊ v1 has the value 3 – passed as an argument to f2

◊ f2 is defined as
 (defun f2 (v2) (1+ v1))

◊ What environment does f2 use?
» We have two choices

> Dynamic scoping
> Static scoping

BLU-10© Gunnar Gotshalks

Execution Environment – 3

◊ Dynamic scoping
» passes the existing environment
 ((v1 3) (A 1) (B 5) ... (D (a b c)))
» after prepending (v2 3)

– v2 is the parameter of f2 and 3 is the argment from f1
> The following is passed

 ((v2 3) (v1 3) (A 1) (B 5) ... (D (a b c)))
> So v1 has a definition in the environment

» The environment grows and shrinks on entry and
exit from functions

> A different environment for every function

BLU-11© Gunnar Gotshalks

Execution Environment – 4

◊ Static scoping
» passes the environment in the context of the

definition of f2
» the same environment passed to f1
» after prepending (v2 3)

> The following environment is passed
 ((v2 3) (A 1) (B 5) ... (D (a b c)))

> So v1 has NO definition in the environment

» Environment on entry is fixed by the static
structure

> The same environment for every function

BLU-12© Gunnar Gotshalks

Dynamic scoping funarg problem

◊ Dynamic scoping leads to the funarg problem as function
arguments can shadow global variables
» (defun funarg (func arg) (funcall func arg))
» (defun timesArg (x) (* arg x))
» (setq arg 2)
» (funarg ʻtimesArg 3)

◊ In a static environment the result is 6

◊ In a dynamic environment the result is 9

◊ Is Clisp dynamically or statically scoped?

BLU-13© Gunnar Gotshalks

Do Lisp Work ... Reminder

Do not use setq within
function definitions

Setq creates global symbols NOT local symbols

Very poor programming practice

