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Error Control   (1)Error Control   (1)

CSE 3213,  Fall 2010
Instructor: N. Vlajic

Required reading:
Garcia   3.9.1, 3.9.2, 3.9.3
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Modulo 2 arithmetic is performed digit by digit on binary numbers.
Each digit is considered independently from its neighbours.
Numbers are not carried or borrowed.

Modulo-2 Arithmetic



3Data Link Layer



4Error Control

Why ErrorWhy Error
Control?Control?

– data sent from one computer to another should be transferred
reliably – unfortunately, the physical link cannot guarantee
that all bits, in each frame, will be transferred without errors
• error control techniques are aimed at improving the error-rate

performance offered to upper layer(s), i.e. end-application

Approaches toApproaches to
Error ControlError Control

(1)  Error Detection + Automatic Retrans. Request (ARQ)
• fewer overhead bits ☺
• return channel required /
• longer error-correction process and waste of bandwidth

when errors are detected /

(2)  Forward Error Correction (FEC)
• error detection + error correction

Probability ofProbability of
SingleSingle--BitBit
ErrorError

– aka bit error rate (BER):
• wireless medium:    pb=10-3

• copper-wire:            pb=10-6

• fibre optics:             pb=10-9
1 0 0 1 1 0 1 0



5Error Control   (cont.)

Types of ErrorsTypes of Errors (1)  Single Bit Errors
• only one bit in a given data unit (byte, packet, etc.)

gets corrupted

(2)  Burst Errors
• two or more bits in the data unit have been corrupted
• errors do not have to occur in consecutive bits
• burst errors are typically caused by external noise

(environmental noise) 
• burst errors are more difficult to detect / correct
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Key Idea ofKey Idea of
Error ControlError Control

– redundancy!!!  – add enough extra information (bits) for
detection / correction of errorors at the destination

• redundant bits = ‘compressed’ version of original data bits
• error correction requires more redundant bits than error

detection
• more redundancy bits  ⇒ better error control ☺ ⇒ more

overhead /

1 0 0 1 0 1 01

1 0

1 0 0 0 1 01 1 0f(S)
1 0 0 0 1 01

f(S’)
1 0 0 0

1
1

comp
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Hamming Distance Hamming Distance 
between 2 Codesbetween 2 Codes

– number of differences between corresponding bits
• can be found by applying XOR on two codewords

and counting number of 1s in the result

Minimum Hamming Minimum Hamming 
DistanceDistance ((ddminmin) ) in ain a
CodeCode

– minimum Hamming distance between all possible
pairs in a set of codewords
• dmin bit errors will make one codeword look like 

another

• larger dmin – better robustness to errors

Hamming Distance

Any 1-bit error will 
not be detected. 

Any 1-bit and 2-bit 
errors will be

detected. 

Example [ k=2, n=5 code ]
Code that adds 3 redundant bits to every 2 information bits, thus resulting in 5-bit 
long codewords.

1101111111



8Hamming Distance   (cont.)

Minimum Hamming Distance Minimum Hamming Distance 
for Error for Error DetectionDetection

– to guarantee detection of up to s errors
in all cases, the minimum Hamming
distance must be

dmin = s + 1

Example [ code with dmin=2  is able to detect s=1 bit-errors ]



9Hamming Distance   (cont.)

Minimum Hamming Distance Minimum Hamming Distance 
for Error for Error CorrectionCorrection

– to guarantee correction of up to t errors
in all cases, the minimum Hamming
distance must be

dmin = 2t + 1

Example [ Hamming distance ]
A code scheme has a Hamming distance dmin=4. What is the error detection and
error correction capability of this scheme?

The code guarantees the detection of up to three errors (s=3), but it can correct
only 1-bit errors!
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kCodeword:        [b                                 ]

– take k information bits and append a single check
bit so that overall number of 1s is even !

• receiver checks if number of 1s is even
� receiver CAN DETECT all single-bit errors & burst

errors with odd number of corrupted bits
� single-bit errors CANNOT be CORRECTED –

position of corrupted bit remains unknown

� all even-number burst errors are undetectable !!!

Error Detection:   Single Parity Check

Error Detection TechniquesError Detection Techniques

Single Parity Check Single Parity Check 
(Even Parity)(Even Parity)

Info Bits:           b1, b2, b3, …, bk

Check Bit:         bk+1= b1+ b2+ b3+ …+ bk modulo 2

Codeword:        (b1, b2, b3, …, b , bk+1

Info Bits:           b1, b2, b3, …, bk

Check Bit:         b = b1+ b2+ b3 b modulo 2

1, b2, b3, …, b , 

Modulo 2 sum  (i.e. XOR)
of information bits!



11Error Detection:   Single Parity Check   (cont.)

Example [ encoder and decoder for single parity check code ]
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Example [ single parity check ]

• Information (7 bits):          [0, 1, 0, 1, 1, 0, 0]
• Parity Bit:                    b8 = 0 + 1 + 0 + 1 +1 + 0 mod 2 = 1
• Codeword (8 bits):            [0, 1, 0, 1, 1, 0, 0, 1]

• If single error in bit 3 :      [0, 1, 1, 1, 1, 0, 0, 1]
– # of 1’s = 5, odd
– Error detected ☺ !

• If errors in bits 3 and 5:    [0, 1, 1, 1, 0, 0, 0, 1]
– # of 1’s = 4, even
– Error not detected / !!!

• If errors in bit 3, 5, 6 :        [0, 1, 1, 1, 0, 1, 0, 1]
– # of 1’s = 5, odd
– Error detected ☺ !

Error Detection:   Single Parity Check   (cont.)
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Example [ single parity check code C(5,4) ]

Error Detection:   Single Parity Check   (cont.)

Single Parity Check CodesSingle Parity Check Codes
and Minimum Hamming and Minimum Hamming 
DistanceDistance ((ddminmin))

– for ALL parity check codes, dmin = 2



14Error Detection:   Single Parity Check   (cont.)

Effectiveness of Single Parity CheckEffectiveness of Single Parity Check

original codeword:

received codeword:
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(1)(1) Random Error VectorRandom Error Vector
Channel ModelChannel Model

– there are 2n possible error (e) vectors –
all error are equally likely
• e.g.  e=[0 0 0 0 0 0 0 0]  and e=[1 1 1 1 1 1 1 1]

are equally likely

• 50%  of error vectors have an even # of 1s,
50%  of error vectors have an odd # of 1s

• probability of error detection failure = 0.5

• not very realistic channel model !!!

1 0 0 1 0 1

1 101 1 0 11

01

0 1 0 0 1 000
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(2.1)  probability of single(2.1)  probability of single
bit error (bit error (w(ew(e)=1)=1))

– where w(e) represents the number of 1s in e
• bit-error occurs at an arbitrary (but particular)

position

)p(1)p(1)p(1...p)p(1)p(1)P( bbbbbb −⋅−⋅−⋅⋅⋅−⋅−== 1w(e)

probability of correctly
transmitted bit

e1=0     e2=0   e3=1 en-2=0   en-1=0   en=0 

b
1-n

b p)p(1)P( ⋅−== 1w(e)

Error Detection:   Single Parity Check   (cont.)

(2)(2) Random Bit ErrorRandom Bit Error
ChannelChannel ModelModel

– bit errors occur independently of each other –
pb = prob. of error in a single-bit transmission

1 0 0 1 0 0

1 0 1 1 0 0

1 0

01
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(2.2)  probability of two bit errors:  (2.2)  probability of two bit errors:  w(e)=2w(e)=2
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Error Detection:   Single Parity Check   (cont.)
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11--bit errors are more likely 2bit errors are more likely 2--bit errors, and so forth!bit errors, and so forth!

(2.3)  probability of w(e)=k bit errors:  (2.3)  probability of w(e)=k bit errors:  w(e)=kw(e)=k
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(2.4)  probability (2.4)  probability that that ssingle ingle parityparity ccheck heck ffails?!ails?!

Error Detection:   Single Parity Check   (cont.)
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progressively smaller components …

number of combinations ‘n choose k’:



18Error Detection:   Single Parity Check   (cont.)

Example [ probability of error detection failure ]

Assume there are n=32 bits in a codeword (packet).
Probability of error in a single bit transmission pb = 10-3.
Find the probability of error-detection failure.
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Approximately, 1 in every 2000 transmitted 32Approximately, 1 in every 2000 transmitted 32--bit long bit long codewordscodewords is corrupted withis corrupted with
an error pattern that cannot be detected with singlean error pattern that cannot be detected with single--bit parity check.bit parity check.



19Error Detection:   2-D Parity Check

Two DimensionalTwo Dimensional
Parity CheckParity Check

– a block of bits is organized in a table (rows & columns)
a parity bit is calculated for each row and column

• 2-D parity check increases the likelihood of detecting
burst errors
� all 1-bit errors CAN BE DETECTED and CORRECTED
� all 2-, 3- bit errors can be DETECTED
� 4- and more bit errors can be detected in some cases

• drawback:  too many check bits !!!



20Error Detection:   2-D Parity Check (cont.)

Example [ effectiveness of 2-D parity check ]

0 0 0

0
0
0



21Error Detection:   2-D Parity Check (cont.)

Example [ 2-D parity check ]

Suppose the following block of data, error-protected with 2-D parity check, is sent:
10101001   00111001   11011101   11100111   10101010.

However, the block is hit by a burst noise of length 8, and some bits are corrupted.
10100011 10001001   11011101   11100111   10101010.

Will the receiver be able to detect the burst error in the sent data?

1010001  1
1000100  1   
1101110  1   
1110011  1  
1010101  0 

1010100  1   
0011100  1   
1101110  1   
1110011  1  
1010101  0 



22Signed Number Representation
http://en.wikipedia.org/wiki/Signed_number_representations
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(Internet) Checksum(Internet) Checksum

Error Detection:   Internet Checksum
– error detection method used by IP, TCP, UDP !!!

• checksum calculation:
� IP/TCP/UDP packet is divided into n-bit sections
� n-bit sections are added using “1-s complement

arithmetic” – the sum is also n-bits long!
� the sum is complemented to produce checksum 

(complement of a number in 1-s arithmetic is the
negative of the number)

• advantages:
� relatively small packet overhead is required –

n bits added regardless of packet size
� easy / fast to implement in software

• disadvantages:
� weak protection compared to CRC – e.g. will NOT

detect misordered bytes/words !!!
� detects all errors involving an odd number of bits

and most errors involving an even number of bits

sum checksum
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Sender:

• data is divided into k sections
each n bits long

• all sections are added using 1-s 
complement to get the sum

• the sum is bit-wise complemented
andbecomes the checksum

• the checksum is sent with the data

Receiver:

• data is divided into k sections
each n bits long

• all sections are added using 1-s
complement to get the sum

• the sum is bit-wise complemented
• if the result is zero, the data is 

accepted, otherwise it is rejected

Error Detection:   Internet Checksum   (cont.)



26Error Detection:   Internet Checksum   (cont.)

Example [ Internet Checksum ]
Suppose the following block of 8 bits is to be sent using a checksum of 4 bits: 
1100 1010.   Find the checksum of the given bit sequence.

1100   
1010
0000

sum:    10110

0110
1

1-s complement addition: 0111   (7)

checksum: 1000 (-7)

1-s complement addition:  
Perform standard binary addition.

If a carry-out (>nth) bit it produced, 
swing that bits around and

add it back into the summation.    

1-s complement addition:  
Perform standard binary addition.

If a carry-out (>nth) bit it produced, 
swing that bits around and

add it back into the summation.    

Negative binary numbers:  
Negative binary numbers are

bit-wise complement of 
corresponding positive numbers.    

Negative binary numbers:  
Negative binary numbers are

bit-wise complement of 
corresponding positive numbers.    



27Error Detection:   Internet Checksum   (cont.)

Suppose the receiver receives the bit sequence and the checksum with no error. 

1100
1010
1000 

sum: 11110
1-s complement addition: 1111  

bit-wise complement:       0000

When the receiver adds the three blocks, it will get all 1s, which, 
after complementing, is all 0s and shows that there is no error.

If one or more bits of a segment are damaged, and the corresponding bit of 
opposite value in a second segment is also damaged, 

the sums of those columns will not change and the receiver will not
detect the problem.    /

If one or more bits of a segment are damaged, and the corresponding bit of 
opposite value in a second segment is also damaged, 

the sums of those columns will not change and the receiver will not
detect the problem.    /



28Error Detection:   Internet Checksum   (cont.)

Example [ Internet Checksum ]
Suppose the following block of 16 bits is to be sent using a checksum of 8 bits. 
10101001   00111001. The numbers are added using one’s complement:

10101001    
00111001
00000000
-------------

Sum 11100010
Checksum         00011101

The pattern sent is       10101001   00111001  00011101.

Now suppose the receiver receives the pattern with no error. 
10101001   00111001   00011101
When the receiver adds the three blocks, it will get all 1s, which, after complementing, 
is all 0s and shows that there is no error. 

10101001

00111001    

00011101 

Sum 11111111  
Complement        00000000 means that the pattern is OK.



29Error Detection:   Internet Checksum   (cont.)

Example [ Internet Checksum ]

Now suppose that in the previous example, there was a burst error of length 5 that 
affected 4 bits. 

10101111   11111001   00011101

When the receiver added the three sections, it got 

10101111

11111001     

00011101 

Partial Sum 1 11000101

Checksum 11000110   

Complement                           00111001 the pattern is corrupted.


