
1

Error Control (1)Error Control (1)

CSE 3213, Fall 2010
Instructor: N. Vlajic

Required reading:
Garcia 3.9.1, 3.9.2, 3.9.3

2

Modulo 2 arithmetic is performed digit by digit on binary numbers.
Each digit is considered independently from its neighbours.
Numbers are not carried or borrowed.

Modulo-2 Arithmetic

3Data Link Layer

4Error Control

Why ErrorWhy Error
Control?Control?

– data sent from one computer to another should be transferred
reliably – unfortunately, the physical link cannot guarantee
that all bits, in each frame, will be transferred without errors
• error control techniques are aimed at improving the error-rate

performance offered to upper layer(s), i.e. end-application

Approaches toApproaches to
Error ControlError Control

(1) Error Detection + Automatic Retrans. Request (ARQ)
• fewer overhead bits ☺
• return channel required /
• longer error-correction process and waste of bandwidth

when errors are detected /

(2) Forward Error Correction (FEC)
• error detection + error correction

Probability ofProbability of
SingleSingle--BitBit
ErrorError

– aka bit error rate (BER):
• wireless medium: pb=10-3

• copper-wire: pb=10-6

• fibre optics: pb=10-9
1 0 0 1 1 0 1 0

5Error Control (cont.)

Types of ErrorsTypes of Errors (1) Single Bit Errors
• only one bit in a given data unit (byte, packet, etc.)

gets corrupted

(2) Burst Errors
• two or more bits in the data unit have been corrupted
• errors do not have to occur in consecutive bits
• burst errors are typically caused by external noise

(environmental noise)
• burst errors are more difficult to detect / correct

6Error Control (cont.)

Calculate
check bits

Channel

Recalculate
check bits

Compare

information bits received information bits

n-k
check
bits

information
accepted if
check bits
match

received
check bits

k bits

Calculate
check bits

Channel

Recalculate
check bits

Compare

information bits received information bits

n-k
check
bits

information
accepted if
check bits
match

received
check bits

Calculate
check bits
Calculate
check bits

Channel

Recalculate
check bits

Recalculate
check bits

CompareCompare

information bits received information bits

n-k
check
bits

information
accepted if
check bits
match

received
check bits

k bits

Key Idea ofKey Idea of
Error ControlError Control

– redundancy!!! – add enough extra information (bits) for
detection / correction of errorors at the destination

• redundant bits = ‘compressed’ version of original data bits
• error correction requires more redundant bits than error

detection
• more redundancy bits ⇒ better error control ☺ ⇒ more

overhead /

1 0 0 1 0 1 01

1 0

1 0 0 0 1 01 1 0f(S)
1 0 0 0 1 01

f(S’)
1 0 0 0

1
1

comp

7

Hamming Distance Hamming Distance
between 2 Codesbetween 2 Codes

– number of differences between corresponding bits
• can be found by applying XOR on two codewords

and counting number of 1s in the result

Minimum Hamming Minimum Hamming
DistanceDistance ((ddminmin)) in ain a
CodeCode

– minimum Hamming distance between all possible
pairs in a set of codewords
• dmin bit errors will make one codeword look like

another

• larger dmin – better robustness to errors

Hamming Distance

Any 1-bit error will
not be detected.

Any 1-bit and 2-bit
errors will be

detected.

Example [k=2, n=5 code]
Code that adds 3 redundant bits to every 2 information bits, thus resulting in 5-bit
long codewords.

1101111111

8Hamming Distance (cont.)

Minimum Hamming Distance Minimum Hamming Distance
for Error for Error DetectionDetection

– to guarantee detection of up to s errors
in all cases, the minimum Hamming
distance must be

dmin = s + 1

Example [code with dmin=2 is able to detect s=1 bit-errors]

9Hamming Distance (cont.)

Minimum Hamming Distance Minimum Hamming Distance
for Error for Error CorrectionCorrection

– to guarantee correction of up to t errors
in all cases, the minimum Hamming
distance must be

dmin = 2t + 1

Example [Hamming distance]
A code scheme has a Hamming distance dmin=4. What is the error detection and
error correction capability of this scheme?

The code guarantees the detection of up to three errors (s=3), but it can correct
only 1-bit errors!

10

kCodeword: [b]

– take k information bits and append a single check
bit so that overall number of 1s is even !

• receiver checks if number of 1s is even
� receiver CAN DETECT all single-bit errors & burst

errors with odd number of corrupted bits
� single-bit errors CANNOT be CORRECTED –

position of corrupted bit remains unknown

� all even-number burst errors are undetectable !!!

Error Detection: Single Parity Check

Error Detection TechniquesError Detection Techniques

Single Parity Check Single Parity Check
(Even Parity)(Even Parity)

Info Bits: b1, b2, b3, …, bk

Check Bit: bk+1= b1+ b2+ b3+ …+ bk modulo 2

Codeword: (b1, b2, b3, …, b , bk+1

Info Bits: b1, b2, b3, …, bk

Check Bit: b = b1+ b2+ b3 b modulo 2

1, b2, b3, …, b ,

Modulo 2 sum (i.e. XOR)
of information bits!

11Error Detection: Single Parity Check (cont.)

Example [encoder and decoder for single parity check code]

12

Example [single parity check]

• Information (7 bits): [0, 1, 0, 1, 1, 0, 0]
• Parity Bit: b8 = 0 + 1 + 0 + 1 +1 + 0 mod 2 = 1
• Codeword (8 bits): [0, 1, 0, 1, 1, 0, 0, 1]

• If single error in bit 3 : [0, 1, 1, 1, 1, 0, 0, 1]
– # of 1’s = 5, odd
– Error detected ☺ !

• If errors in bits 3 and 5: [0, 1, 1, 1, 0, 0, 0, 1]
– # of 1’s = 4, even
– Error not detected / !!!

• If errors in bit 3, 5, 6 : [0, 1, 1, 1, 0, 1, 0, 1]
– # of 1’s = 5, odd
– Error detected ☺ !

Error Detection: Single Parity Check (cont.)

13

Example [single parity check code C(5,4)]

Error Detection: Single Parity Check (cont.)

Single Parity Check CodesSingle Parity Check Codes
and Minimum Hamming and Minimum Hamming
DistanceDistance ((ddminmin))

– for ALL parity check codes, dmin = 2

14Error Detection: Single Parity Check (cont.)

Effectiveness of Single Parity CheckEffectiveness of Single Parity Check

original codeword:

received codeword:

]... n321 bb b[bb =

]... '
n

'
3

'
2

'
1

' bb b[bb =

error vector:]... n321 ee e[ee =

⎪⎩

⎪
⎨
⎧

=

≠
=

'
kk

'
kk

k bb if 0,
bb if 1,

e

(1)(1) Random Error VectorRandom Error Vector
Channel ModelChannel Model

– there are 2n possible error (e) vectors –
all error are equally likely
• e.g. e=[0 0 0 0 0 0 0 0] and e=[1 1 1 1 1 1 1 1]

are equally likely

• 50% of error vectors have an even # of 1s,
50% of error vectors have an odd # of 1s

• probability of error detection failure = 0.5

• not very realistic channel model !!!

1 0 0 1 0 1

1 101 1 0 11

01

0 1 0 0 1 000

15

(2.1) probability of single(2.1) probability of single
bit error (bit error (w(ew(e)=1)=1))

– where w(e) represents the number of 1s in e
• bit-error occurs at an arbitrary (but particular)

position

)p(1)p(1)p(1...p)p(1)p(1)P(bbbbbb −⋅−⋅−⋅⋅⋅−⋅−== 1w(e)

probability of correctly
transmitted bit

e1=0 e2=0 e3=1 en-2=0 en-1=0 en=0

b
1-n

b p)p(1)P(⋅−== 1w(e)

Error Detection: Single Parity Check (cont.)

(2)(2) Random Bit ErrorRandom Bit Error
ChannelChannel ModelModel

– bit errors occur independently of each other –
pb = prob. of error in a single-bit transmission

1 0 0 1 0 0

1 0 1 1 0 0

1 0

01

16

(2.2) probability of two bit errors: (2.2) probability of two bit errors: w(e)=2w(e)=2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅⋅−=⋅−==
b

b
b

1-n
b

2
b

2-n
b p1

pp)p(1)(p)p(1)P(2w(e)

Error Detection: Single Parity Check (cont.)

)P(
p1

p)P()P(
b

b 1w(e)1w(e)2w(e) === <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=

<1, since pb<0.5

11--bit errors are more likely 2bit errors are more likely 2--bit errors, and so forth!bit errors, and so forth!

(2.3) probability of w(e)=k bit errors: (2.3) probability of w(e)=k bit errors: w(e)=kw(e)=k

() 1k
1k

b

b
b

1-n
b

k
b

k-n
b a)P(

p1
pp)p(1)(p)p(1)P(−

−

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅⋅−=⋅−= == 1w(e)kw(e)

)P()P()P(1w(e)2w(e)kw(e) =<=<<= ...

17

(2.4) probability (2.4) probability that that ssingle ingle parityparity ccheck heck ffails?!ails?!

Error Detection: Single Parity Check (cont.)

...)P(*errors) bit6 of#
)P(*errors) bit4 of#
)P(*errors) bit2 of#

...)P()P()P(
)P()P(

+−+
+−+
+−=

=+++=
==

=

=

=

6w(e)
4w(e)
2w(e)

(
(
(

error bit6 anyerror bit4 anyerror bit2 any
1s of number even withpatterns errorfailure detection error

k)!(nk!
n!

k
n

errors) bitk of(#
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

...+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−− 6n

b
6
b

4n
b

4
b

2n
b

2
b)p(1p

6
n

)p(1p
4
n

)p(1p
2
n

)P(failure detection error

1 0 0 1 1 0 01

1 001 1 0 01

progressively smaller components …

number of combinations ‘n choose k’:

18Error Detection: Single Parity Check (cont.)

Example [probability of error detection failure]

Assume there are n=32 bits in a codeword (packet).
Probability of error in a single bit transmission pb = 10-3.
Find the probability of error-detection failure.

...+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 26

b
6
b

28
b

4
b

30
b

2
b)p(1p

6
32

)p(1p
4
32

)p(1p
2
32

)P(failure detection error

62330
b

2
b 10*496)(10

2
31*32)p(1p

2
32 −− =≈−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

124328
b

4
b 10*35960)(10

4*3*2
29*3031**32)p(1p

4
32 −− =≈−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2000
110*4.9610*496)P(46failure detection error ≈== −−

Approximately, 1 in every 2000 transmitted 32Approximately, 1 in every 2000 transmitted 32--bit long bit long codewordscodewords is corrupted withis corrupted with
an error pattern that cannot be detected with singlean error pattern that cannot be detected with single--bit parity check.bit parity check.

19Error Detection: 2-D Parity Check

Two DimensionalTwo Dimensional
Parity CheckParity Check

– a block of bits is organized in a table (rows & columns)
a parity bit is calculated for each row and column

• 2-D parity check increases the likelihood of detecting
burst errors
� all 1-bit errors CAN BE DETECTED and CORRECTED
� all 2-, 3- bit errors can be DETECTED
� 4- and more bit errors can be detected in some cases

• drawback: too many check bits !!!

20Error Detection: 2-D Parity Check (cont.)

Example [effectiveness of 2-D parity check]

0 0 0

0
0
0

21Error Detection: 2-D Parity Check (cont.)

Example [2-D parity check]

Suppose the following block of data, error-protected with 2-D parity check, is sent:
10101001 00111001 11011101 11100111 10101010.

However, the block is hit by a burst noise of length 8, and some bits are corrupted.
10100011 10001001 11011101 11100111 10101010.

Will the receiver be able to detect the burst error in the sent data?

1010001 1
1000100 1
1101110 1
1110011 1
1010101 0

1010100 1
0011100 1
1101110 1
1110011 1
1010101 0

22Signed Number Representation
http://en.wikipedia.org/wiki/Signed_number_representations

23

(Internet) Checksum(Internet) Checksum

Error Detection: Internet Checksum
– error detection method used by IP, TCP, UDP !!!

• checksum calculation:
� IP/TCP/UDP packet is divided into n-bit sections
� n-bit sections are added using “1-s complement

arithmetic” – the sum is also n-bits long!
� the sum is complemented to produce checksum

(complement of a number in 1-s arithmetic is the
negative of the number)

• advantages:
� relatively small packet overhead is required –

n bits added regardless of packet size
� easy / fast to implement in software

• disadvantages:
� weak protection compared to CRC – e.g. will NOT

detect misordered bytes/words !!!
� detects all errors involving an odd number of bits

and most errors involving an even number of bits

sum checksum

24

25

Sender:

• data is divided into k sections
each n bits long

• all sections are added using 1-s
complement to get the sum

• the sum is bit-wise complemented
andbecomes the checksum

• the checksum is sent with the data

Receiver:

• data is divided into k sections
each n bits long

• all sections are added using 1-s
complement to get the sum

• the sum is bit-wise complemented
• if the result is zero, the data is

accepted, otherwise it is rejected

Error Detection: Internet Checksum (cont.)

26Error Detection: Internet Checksum (cont.)

Example [Internet Checksum]
Suppose the following block of 8 bits is to be sent using a checksum of 4 bits:
1100 1010. Find the checksum of the given bit sequence.

1100
1010
0000

sum: 10110

0110
1

1-s complement addition: 0111 (7)

checksum: 1000 (-7)

1-s complement addition:
Perform standard binary addition.

If a carry-out (>nth) bit it produced,
swing that bits around and

add it back into the summation.

1-s complement addition:
Perform standard binary addition.

If a carry-out (>nth) bit it produced,
swing that bits around and

add it back into the summation.

Negative binary numbers:
Negative binary numbers are

bit-wise complement of
corresponding positive numbers.

Negative binary numbers:
Negative binary numbers are

bit-wise complement of
corresponding positive numbers.

27Error Detection: Internet Checksum (cont.)

Suppose the receiver receives the bit sequence and the checksum with no error.

1100
1010
1000

sum: 11110
1-s complement addition: 1111

bit-wise complement: 0000

When the receiver adds the three blocks, it will get all 1s, which,
after complementing, is all 0s and shows that there is no error.

If one or more bits of a segment are damaged, and the corresponding bit of
opposite value in a second segment is also damaged,

the sums of those columns will not change and the receiver will not
detect the problem. /

If one or more bits of a segment are damaged, and the corresponding bit of
opposite value in a second segment is also damaged,

the sums of those columns will not change and the receiver will not
detect the problem. /

28Error Detection: Internet Checksum (cont.)

Example [Internet Checksum]
Suppose the following block of 16 bits is to be sent using a checksum of 8 bits.
10101001 00111001. The numbers are added using one’s complement:

10101001
00111001
00000000

Sum 11100010
Checksum 00011101

The pattern sent is 10101001 00111001 00011101.

Now suppose the receiver receives the pattern with no error.
10101001 00111001 00011101
When the receiver adds the three blocks, it will get all 1s, which, after complementing,
is all 0s and shows that there is no error.

10101001

00111001

00011101

Sum 11111111
Complement 00000000 means that the pattern is OK.

29Error Detection: Internet Checksum (cont.)

Example [Internet Checksum]

Now suppose that in the previous example, there was a burst error of length 5 that
affected 4 bits.

10101111 11111001 00011101

When the receiver added the three sections, it got

10101111

11111001

00011101

Partial Sum 1 11000101

Checksum 11000110

Complement 00111001 the pattern is corrupted.

