Error Control (1)

Required reading:
Garcia 3.9.1, 3.9.2,3.9.3

CSE 3213, Fall 2010
Instructor: N. Vlajic



Modulo-2 Arithmetic

Modulo 2 arithmetic is performed digit by digit on binary numbers.
Each digit is considered independently from its neighbours.
Numbers are not carried or borrowed.

o®o=0 1T®1 =0
: : 1 0 1 1 0
a. Two bits are the same, the result is O. @ 1 : 0 0
0 1 0 1
0®1 =1 1 ®0 =1

b. Two bits are different, the result is 1. c. Result of XORing two patterns
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Error Control )

Why Error — data sent from one computer to another should be transferred

Control? reliably — unfortunately, the physical link cannot guarantee
that all bits, in each frame, will be transferred without errors

e error control techniques are aimed at improving the error-rate
performance offered to upper layer(s), i.e. end-application

Probability of — aka bit error rate (BER):

Single-Bit « wireless medium: p, =103 \
Error « copper-wire: p,=106 TToToT T ZToTaTo]
o fibre optics: p,=10"°

Approaches to (1) Error Detection + Automatic Retrans. Request (ARQ)
Error Control o fewer overhead bits ©

e return channel required ®

e longer error-correction process and waste of bandwidth
when errors are detected ®

(2) Forward Error Correction (FEC)
e error detection + error correction




Types of Errors (1) Single Bit Errors

e« only one bit in a given data unit (byte, packet, etc.)
gets corrupted

Ochangedto 1

P N
[o]o]o]ofofo1]of—{o]o]ofofF]o]1]o]

Sent Received

(2) Burst Errors

e two or more bits in the data unit have been corrupted
e errors do not have to occur in consecutive bits

e burst errors are typically caused by external noise
(environmental noise)

e burst errors are more difficult to detect / correct

Length of burst

error (5 bits)
Sent
lo[1]ofofo]1[ofofo[1]o[ofofo]1]1]

Bits corrupted by burst error
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Key Idea of — redundancy!!! — add enough extra information (bits) for
Error Contro| detection/correction of errorors at the destination
e redundant bits = ‘compressed’ version of original data bits

e error correction requires more redundant bits than error
detection

e more redundancy bits = better error control © = more
overhead ®

information bits received information bigs

Recalculate
K bit check bits
its
' Channel
! —e)p
n-k rehcel\k/ebc_it information
check check bits accepted if
bits check bits
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Hamming Distance

Hamming Distance — number of differences between corresponding bits

between 2 Codes « can be found by applying XOR on two codewords
and counting number of 1s in the result

Minimum Hamming — minimum Hamming distance between all possible

Distance (d,....) in a pairs in a set of codewords
min
Code e d.;, bit errors will make one codeword look like
another

e larger d.;,, — better robustness to errors

Example [k=2,n=5code]

Code that adds 3 redundant bits to every 2 information bits, thus resulting in 5-bit
long codewords.

Dataword Codeword
00 00000
j ol — X Any 1-bit and 2-bit
. ) ny 1-bit and 2-bi
Any 1-bit error will 10 10101 y :
be d g errors will be
not be detected. [ 11110 detec—ted.




Minimum Hamming Distance — to guarantee detection of up to s errors
for Error Detection in all cases, the minimum Hamming
distance must be

d

=s+1

min

Legend

. Any valid codeword
- y @ Any corrupted codeword
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with O to s errors

Example [codewithd . =2 is able to detect s=1 bit-errors ]

Datawords Codewords
00 000
01 011
10 101
11 110




Minimum Hamming Distance — to guarantee correction of up to t errors
for Error Correction in all cases, the minimum Hamming
distance must be

d. =2t+1

min

Territory of x Territory of y

- Radius t
[
[
[
|
|
|
|
|
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Legend

. Any valid codeword

@ Any corrupted codeword
with 1 to t errors

Y

min > 2t

Example [ Hamming distance]
A code scheme has a Hamming distance d,;,=4. What is the error detection and
error correction capability of this scheme?

The code guarantees the detection of up to three errors (s=3), but it can correct
only 1-bit errors!



10

Error Detection: Single Parity Check

Error Detection Techniques

Detection methods I

| _ |
Cyclic

redundancy check

Parity check Checksum I

Single Parity Check — take k information bits and append a single check

(Even Parity) bit so that overall number of 1s is even !
Info Bits: b,, by, by, ..., by
Modulo 2 sum (i.e. XOR) | — Check Bit: By;1= byt byt bgt ...+ b modulo 2 —

of information bits!

Codeword: [b,, b,, bg, ..., by, by 4]

e receiver checks if number of 1s is even

= receiver CAN DETECT all single-bit errors & burst
errors with odd number of corrupted bits

= single-bit errors CANNOT be CORRECTED -
position of corrupted bit remains unknown

= all even-number burst errors are undetectable !!!




Example [encoder and decoder for single parity check code ]

Sender Receiver
Encoder Decoder
Dataword Dataword
dz(aj(aq|ag dz[dzfas(dg
AcceptT T T T
T —— T
Decision [ 3. 5
*— logic _*!é*
I Syndrome S| XA A A
]
Parity bit Unreliabl 11
nreliable
YYYVvYYy transmission T
az|ax(ag|dg|fo > b3 (b, |by|bg|dg
Codeword Codeword
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Example [ single parity check ]

 Information (7 bits): [0,1,0,1, 1,0, 0]
« Parity Bit: bg=0+1+0+1+1+0mod2=1
« Codeword (8 bits): [0,1,0,1,1,0,0, 1]

« Ifsingleerrorinbit3: [0,1,1,1,1,0,0, 1]
— #of1s=5, 0dd
— Error detected © !

« Iferrorsinbits3and5;: [0,1,1,1,0,0,0,1]
— #of1l's =4, even
— Error not detected ® !!!

« Iferrorsinbit3,5,6: [0,1,1,1,0,1,0, 1]
— #ofls =5, odd
— Error detected © |



Example [ single parity check code C(5,4) ]

Datawords Codewords Datawords Codewords
0000 1000
0001 1001
0010 1010
0011 1011
0100 1100
0101 1101
0110 1110
0111 1111

Single Parity Check Codes — for ALL parity check codes, d,,;, = 2
and Minimum Hamming
Distance (d

min)



Effectiveness of Single Parity Check

original codeword: b=[b, b, b,.
received codeword: b =[b, b, b,

error vector: e = [e1 e, e,.

.b.] 1|olo]1|1]0]0]1
___b;n] 1/1lof2|2]2]0]1
.e.] o[1]ofojof1]0]0

0, if b, =b,

1, if by #b
ek:{ k k

(1) Random Error Vector — there are 2" possible error (e) vectors —
Channel Model all error are equally likely

e.g. es[00000000] ande=[11111111]
are equally likely

50% of error vectors have an even # of 1s,
50% of error vectors have an odd # of 1s

probability of error detection failure = 0.5

not very realistic channel model !!!
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(2) Random Bit Error — bit errors occur independently of each other —
Channel Model p, = prob. of error in a single-bit transmission

(2.1) probability of single — where w(e) represents the number of 1s in e

bit error (w(e)=1) e bit-error occurs at an arbitrary (but particular)

position

e,=0 e,=0 e;=1 e,,=0 e,,=0 e,=0

P(w(e)=1)=(1-p,) - (1-p,)-Pp -----(1-pp) - (1-pp) - (1-Py)
N

probability of correctly
transmitted bit

P(w(e)=1)=(1- pb)n_l Py




(2.2) probability of two bit errors: W(e) 2

P(w(e)=2) = P(W(e):l)-(l_pb ) < P(w(e)=1)

b

(2.3) probability of w(e)=k bit errors: w(e)=k

1-p,

P(w(e)=k)=(1-p,)"™ - (P,)" —(1 Py)"™ pb( E ) =P(w(e)=1)-(a)”

P(w(e)=k) <..< P(w(e)=2) < P(w(e)=1)

1-bit errors are more likely 2-bit errors, and so forth!

16
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(2.4) probability that single parity check fails?!

P(error detection failure) = P(error patterns with even number of 1s) =
=P(any 2 bit error)+P(any 4 bit error ) +P(any 6 bit error)+...=
= (#of 2-Dbiterrors)*P(w(e)=2) +
+ (#of 4—Dbiterrors)* P(w(e)=4) +
+ (#of 6—Dbit errors)*P(w(e)=6) +...

number of combinations ‘n choose k’:

n! 1/o0(of1l2|0f1]0

ki(n—k)! 1{12]{ofo|1|1|0|0

n
(#of k—Dbit errors) = (k)

. . . n 2 n-2 n 4 n-4 n 6 n-6
P(error detection failure) = 5 Py (1-p,)" “ + g P, (1-p,)" "+ 5 p,(1-p,)" " +...

»
»

progressively smaller components ...



Example [ probability of error detection failure ]

Assume there are n=32 bits in a codeword (packet).

Prob
Find

ability of error in a single bit transmission p, = 103,
the probability of error-detection failure.

32 32 32
P(error detection failure):(2 jpﬁ(l—pb 304{4 ]ps(l—pb 28+(6 jpg(l_pb 26 4

32
2

32
4

p2(1-p,)® ~ 223102y = 496 *10°¢
* * *
0! (1=p, )?* ~ 22731730729 (1 5oys _ 35060*10%2
2*3%4
P(error detection failure) = 496*10° =4.96*10" ~ L
2000
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Approximately, 1 in every 2000 transmitted 32-bit long codewords is corrupted with

an error pattern that cannot be detected with single-bit parity check.



Error Detection:

2-D Parity Check +

Two Dimensional — ablock of bits is organized in a table (rows & columns)

a parity bit is calculated for each row and column

Parity Check

e 2-D parity check increases the likelihood of detecting
burst errors

= all 1-bit errors CAN BE DETECTED and CORRECTED
= all 2-, 3- bit errors can be DETECTED
= 4- and more bit errors can be detected in some cases

o drawback: too many check bits !!!

Original data
[1100111 1011101 0111001 0101001 |
1 1 0 0 1 1 111
ket
1 0o 1 1 1 0 1|1 %
o
a
0 1 1 1 0 0 110 =
o'
—0 1 0 1 0 0 1|1
I_ 0 1 0 1 0 1 0 | 1 Column parities
Y Y Y Y Y
~——{11001111 10111011 01110010 01010011 01010101 |

Data and parity bits



Example [ effectiveness of 2-D parity check ]
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a. Design of row and column parities
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b. One error affects two parities
B O [RoEcEt 1 ] -—
1 0 1|10l 1 o ] —--—
o1 1|0l o o 0 -
0
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o

d. Three errors affect four parities

c. Two errors affect two parities

—_
=
o
o

[o] [1]

{IEC) | I T )

[11 [o]

(R () S| ) S

o
o

e, Four errors cannot be detected
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Example [ 2-D parity check ]

Suppose the following block of data, error-protected with 2-D parity check, is sent:
10101001 00111001 11011101 11100111 10101010.

However, the block is hit by a burst noise of length 8, and some bits are corrupted.
10100011 10001001 11011101 11100111 10101010.

Will the receiver be able to detect the burst error in the sent data?

1010100 1 1010001 1
0011100 1 1000100 1:
1101110 1 1101110 1
1110011 1 1110011 1

1010101 O 1010101: 0



http://en.wikipedia.org/wiki/Signed number representations

Signed Number Representation

8 bit signed magnitude

Binary
Q0ooooon
a0ooooa

ar111111
10000000

10000001

11111111

Signed
H]

-127

Unsigned
a
1

127
125

129

255

8 bit ones’ complement

Binary
value

aooanooo
a0ooa0o1

a1111101
a1111110
a1111111
10000000
10000001
10000010

11111110
111N

(nes’
complement
interpretation

H]
1

125

126

127
=127
—-126
=124

Unsigned
interpretation

a
1

125
126
127
128
129
130

254
255
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Error Detection: Internet Checksum 2

(Internet) Checksum — error detection method used by |P, TCP, UDP !!!
e checksum calculation:
= |[P/TCP/UDP packet is divided into n-bit sections

= n-bit sections are added using “1-s complement
arithmetic” — the sum is also n-bits long!

= the sum is complemented to produce checksum
(complement of a number in 1-s arithmetic is the
negative of the number)

e advantages:

= relatively small packet overhead is required —
n bits added regardless of packet size

= easy /fast to implement in software

o disadvantages:
= weak protection compared to CRC —e.qg. will NOT
detect misordered bytes/words !!!

» detects all errors involving an odd number of bits
and most errors involving an even number of bits

sum checksum

I-T'=-0

v .
T '—'T —»  Receiver |




20-65536 bytes
< >
20-60 bytes
< >
Header Data
/ —_—
VER HLEN Service type Total length
4 bits 4 bits 8 bits 16 bits
Identification Flags Fragmentation offset
16 bits 3 bits 13 bits
Time to live Protocol Header checksum
& bits 8 bits 16 bits
Source IP address

Destination IP address

Option

24
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Sender:

data is divided into k sections
each n bits long

all sections are added using 1-s
complement to get the sum

the sum is bit-wise complemented
and becomes the checksum

the checksum is sent with the data

Recelver:

e datais divided into k sections

each n bits long

e all sections are added using 1-s
complement to get the sum

e the sum is bit-wise complemented

e if theresultis zero, the data is
accepted, otherwise it is rejected

Sender Receiver
Section 1 | n bits Section 1 | n bits
Section 2 | n bits Section 2 | n bits

Checksum | All Os Checksum | n bits
Section k | n bits I 1 bits ' Section k | n bits
Checksum
Sum | nbits Packet Sum | n bits
Complementi Complementi
n bits n bits
Checksum Result

R If the result is 0, keep:

otherwise, discard.




Example [ Internet Checksum ]

Suppose the following block of 8 bits is to be sent using a checksum of 4 bits:
1100 1010. Find the checksum of the given bit sequence.

1100 A
1010
0000

sum: 110

0110
1

1-s complement addition: 0111 (7) )

checksum: 1000 (-7) }

26

1-s complement addition:
Perform standard binary addition.
If a carry-out (>nt") bit it produced,

swing that bits around and
add it back into the summation.

Negative binary numbers:
Negative binary numbers are
bit-wise complement of
corresponding positive numbers.

v




Suppose the receiver receives the bit sequence and the checksum with no error.

1100

1010

1000

sum: (11110

1-s complement addition: 1111
bit-wise complement: 0000

When the receiver adds the three blocks, it will get all 1s, which,
after complementing, is all Os and shows that there is no error.

If one or more bits of a segment are damaged, and the corresponding bit of
opposite value in a second segment is also damaged,
the sums of those columns will not change and the receiver will not
detect the problem. ®

27
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Example [ Internet Checksum ]

Suppose the following block of 16 bits is to be sent using a checksum of 8 bits.
10101001 00111001. The numbers are added using one’s complement:

10101001
00111001
00000000

Sum 11100010
Checksum 00011101

The pattern sent is 10101001 00111001 00011101.

Now suppose the receiver receives the pattern with no error.

10101001 00111001 00011101

When the receiver adds the three blocks, it will get all 1s, which, after complementing,
is all Os and shows that there is no error.

10101001
00111001
00011101

Sum 11111111
Complement 00000000 means that the pattern is OK.



Example [ Internet Checksum ]

Now suppose that in the previous example, there was a burst error of length 5 that

affected 4 bits.

10101

111001 00011101

When the receiver added the three sections, it got

Partial Sum
Checksum

Complement

10101111
11111001
00011101
11000101
11000110

the pattern is corrupted.
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