Digital Transmission of Digital Data: Line and Block Coding, Digital Transmission Modes

1

Required reading: Garcia 3.6

CSE 3213, Fall 2010 Instructor: N. Vlajic

Line Coding: Design Consideration

- Line Coding process of converting binary data (sequence of bits) to a digital signal
 - digital signal depends 'linearly' on information bits bits are transmitted 'one-by-one' - different from <u>block coding</u>

Data vs. Signal Level

- data levels number of values / levels used to represent data (typically only two: 0 and 1)
- signal levels number of values / levels allowed in a particular signal

in Line Coding

56 kbps \Rightarrow 0.0178 ms

- **DC Component** some line coding schemes have a residual (DC) component, which is generally undesirable
 - transformers do not allow passage of DC component
 - DC component \Rightarrow extra energy useless!

Self-Synchronization – to correctly interpret signal received from sender receiver's bit interval must exactly (Clocking) correspond to sender's bit intervals

> if receiver clock is faster/slower, bit intervals not matched \Rightarrow receiver misinterprets signal

Line Coding Schemes – can be divided into four broad categories

Unipolar Line Coding – uses only <u>one non-zero</u> and one zero voltage level

- (e.g.) 0 = zero level, 1 = non-zero level
- simple to implement, but obsolete due to two main problems:
 - DC component present (8)
 - lack of synchronization for long series of 1-s or 0-s ⊗

Polar Line Coding – uses <u>two non-zero voltage level</u> for represent. of two data levels - one positive & one negative

- "DC-problem" alleviated ©
- 4 main types of polar coding:

(1) Nonreturn to Zero (NRZ)

- NRZ-level: signal level represents particular bit, (e.g.) 0 = positive volt., 1 = negative volt.
 - poor synchronizat. for long series of 1-s & 0-s $\,\, \otimes$
- NRZ-invert: inversion of voltage level = bit 1, no voltage = bit 0
 - 1s in data streams enable synchronization
 - long sequence of 0-s still a problem (3)

NRZ-I is better than NRZ-L, but it still does not provide complete synchronization. To ensure complete synchronization, there must be a signal change for each bit.

Line Coding: Polar (cont.)

(2) Return to Zero (RZ) – (e.g.) 0 = negative volt., 1 = positive volt., AND signal must return to zero halfway through each bit interval

- perfect synchronization (2)
- drawback 2 signal changes to encode each bit ⇒ pulse rate is x2 rate of NRZ coding, i.e. more bandwidth is required, regardless of bit sequence ⊗

Non-zero level \Rightarrow beginning of a new bit.

- (3) Manchester inversion at the middle of each bit interval is used for both synchronization and bit representation
 - 0 = pos-to-neg transition, 1 = neg-to-pos transition
 - perfect synchronization ⁽²⁾
 - there is always transition at the middle of the bit, and maybe one transition at the end of each bit
 - fine for alternating sequences of bits (10101), but wastes bandwidth for long runs of 1-s or 0-s ⊗
 - used by IEEE 802.3 (Ethernet)

(4) Differential Manchester – inversion in the middle of bit interval is used for synchronization – presence or absence of additional transition at the beginning of next bit interval identifies the bit

- 0 = transition, 1 = no transition
- perfect synchronization (2)
- fine for long runs of 1s, but wastes bandwidth for long runs of 0-s ⊗
- used by IEEE 802.5 (Token Ring)

Bipolar	Line	Coding –	uses two non-zero	and zero voltage level
-		-	for representation	of two data levels

- 0 = zero level; 1 = alternating pos and neg level
- if 1st 'bit 1' is represented by positive amplitude, 2nd will be represented by negative amplitude, 3rd by positive, etc.
- less bandwidth required than with Manchester coding (for any sequence of bits) ⁽²⁾
- loss of synchronization is possible for long runs of 0-s (2)

2B1Q (2 Binary 1 Quaternary) -	data patterns of size 2 bits are		
Coding	encoded as one signal element		
	belonging to a four-level signal		

- data is sent two time faster than with NRZ-L
- receiver has to discern 4 different thresholds

Block Coding – unlike line codes which operate on a stream of information bits, block codes operate on block of information bits

> redundant bit(s) are added to each block of information bits to <u>ensure synchronization and error detection</u>

Drawback: longer encoding / decoding time and ???.

Example [4B/5B block code]

Every 4 bits of data is encoded into a 5-bit code.

The 5-bit codes are normally line coded using NRZ-invert (longer sequences of 1 are tolerated)!!!

The selection of the 5-bit code is such that each code contains no more than one leading 0 and no more than two trailing 0s.

Therefore, when these 5-bit codes are sent in sequence, no more than three consecutive 0s are encountered.

4-bit blocks	5-bit blocks	Data	Code	Data	Code
	00000	0000	11110	1000	10010
	00001	0001	01001	1001	10011
	► 01001	0010	10100	1010	10110
· · · · · · · · · · · · · · · · · · ·	▶ 01010	0011	10101	1011	10111
•		0100	01010	1100	11010
1111	► 11101	0101	01011	1101	11011
	▶ 11110	0110	01110	1110	11100
		0111	01111	1111	11101

4B/5B coding is used in the optical fiber transmission system (FDDI).

Data Rate – # of data elements (bits) sent in 1 sec – unit: bps Signal Rate – # of signal elements/pulses sent in 1 sec – unit: baud

One goal of data communications is to increase data rate (speed of transmission) while decreasing signal rate (bandwidth requirements).

r = data rate / signal rate – ratio between data & signal rate

Signal rate observed in case of a particular data-bit stream:

- depends on N [bps], 1/r [bit/pulse], and <u>the actual data pattern</u>
 - signal rate for a pattern of all 1-s or all 0-s may be different from that for a patter of alternating 1-s and 0-s

$$S = c \cdot N \cdot \frac{1}{r} \text{ [pulses/sec]}$$

$$\uparrow \text{ case factor}$$

Example [data vs. signal rate]

A signal is carrying data in which one data element is encoded as one signal element (r=1).

If the bit rate is 100 kbps, what is the average value of the baud rate, assuming c is between 0 and 1?

Answer:

 $C_{average} = 0.5$

 $S = c \cdot N \cdot \frac{1}{r} = \frac{1}{2} \cdot 100,000 \cdot \frac{1}{1} = 50,000 \text{ [pulses/sec]} = 50 \text{ [kbaud]}$

How do we send bits / pulses over wire?

- Serial Mode: 1 bit is sent with each clock tick
 - one communication channel / wire is needed
- Parallel Mode: multiple bits are sent with each clock tick
 - multiple channels / wires, bundled in one cable, are required
 - advantage: n-times faster than serial mode
 - disadvantage: cost = 8x wires (used only over short distances)

Exercise

- 1. Pulse rate is always ______ the bit rate.
 - (a) greater than
 - (b) less than
 - (c) greater than or equal to
 - (d) less than or equal to
- 2. Which encoding type always has a nonzero average amplitude?
 - (a) unipolar
 - (b) polar
 - (c) bipolar
 - (d) all the above
- 3. Which of the following encoding methods does not provide for synchronization.
 - (a) NRZ-L
 - (b) RZ
 - (c) NRZ-I
 - (d) Manchester
- 4. Block coding can help in ______ at the receiver.
 - (a) synchronization
 - (b) error detection
 - (c) attenuation
 - (d) (a) and (b)