Analog and Digital Signals, Time and Frequency Representation of Signals

1

Required reading: Garcia 3.1, 3.2

CSE 3213, Fall 2010 Instructor: N. Vlajic

- Data vs. Signal
- Analog vs. Digital
- Analog Signals
 - Simple Analog Signals
 - Composite Analog Signals
- Digital Signals

- Data information formatted in human/machine readable form
 examples: voice, music, image, file
- **Signal** electric or electromagnetic representation of data
 - transmission media work by conducting energy along a physical path; thus, to be transmitted, data must be turned into energy in the form of electro-magnetic signals
- Transmission communication of <u>data</u> through propagation and processing of <u>signals</u>

Signal Representation

Signal Representation – typically in 2D space, as a function of <u>time</u>, <u>space</u> or frequency

- when horizontal axis is time, graph displays the value of a signal at <u>one particular point</u> <u>in space</u> as a function of time
- when horizontal axis is space, graph displays the value of a signal at <u>one particular point in</u> <u>time</u> as a function of space

The time- and space- representation of a signal often resemble each other, though the signal envelope in the space-representation is different (signal attenuates over distance).

Example [signal in time and space]

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=35

- Data vs. Signal
- Analog vs. Digital
- Analog Signals
 - Simple Analog Signals
 - Composite Analog Signals
- Digital Signals

Analog vs. Digital

Analog voi Digitai Data	analog data – representation variable takes on continuous values in some interval, e.g. voice, temperature, etc. digital data – representation variable takes on discrete (a <u>finite & countable number</u> of) values in a given interval, e.g. text, digitized images, etc.
Analog vs. Digital Signal	 analog signal – signal that is <u>continuous</u> in time and can assume an <u>infinite</u> number of values in a given range (continuous in time and value) discrete (digital) signal – signal that is
	<u>continuous in time</u> and assumes only a <u>limited</u> number of values (maintains a constant level and then changes to another constant level)
Value	Value

Analog vs. Digital (cont.)

Both analog and digital data can be transmitted using either analog or digital signals.

example: analog signaling of analog and digital data

... will talk more about this later ...

Analog vs. Digital (cont.)

Periodic vs. Aperiodic • Signals

periodic signal – completes a pattern within some measurable time frame, called a period (T), and then repeats that pattern over subsequent identical periods

 $\exists T \in R \text{ s.t. } s(t+T) = s(t), \forall t \in \langle -\infty, +\infty \rangle$

- T smallest value that satisfies the equation
- T is (typically) expressed in seconds
- aperiodic signal changes without exhibiting a pattern that repeats over time

- Data vs. Signal
- Analog vs. Digital
- Analog Signals
 - Simple Analog Signals
 - Composite Analog Signals
- Digital Signals

Analog Signals

Classification of Analog Signals

- (1) **Simple Analog Signal** cannot be decomposed into simpler signals
 - <u>sinewave</u> most fundamental form of <u>periodic</u> analog signal – mathematically described with 3 parameters

 $s(t) = A \cdot sin(2\pi ft + \varphi)$

- (1.1) peak amplitude (A) absolute value of signal's highest intensity unit: volts [V]
- (1.2) frequency (f) number of periods in one second
 unit: hertz [Hz] = [1/s] <u>inverse of period (T)</u>!
- (1.3) phase (φ) absolute position of the waveform relative to an <u>arbitrary origin</u> unit: degrees [°] or radians [rad]

(2) Composite Analog Signal – composed of multiple sinewaves

The origin is usually taken as the last previous passage through zero from the negative to the positive direction.

Simple Analog Signals

	- measured in degrees or radians
Analog Signals	• $360^{\circ} = 2\pi \text{ rad}$
	 1° = 2π/360 rad
	 1 rad = (360/2π)^o = 57.29578°
	 phase shift of 360° = shift of 1 complete period
	 phase shift of 180° = shift of 1/2 period
	 phase shift of 90° = shift of 1/4 period

φ = 0° or 360°

http://hermes.eee.nott.ac.uk/teaching/cal/h61sig/sig0001.html

Example [period and frequency]

Unit	Equivalent	Unit	Equivalent
seconds (s)	1 s	hertz (Hz)	1 Hz
milliseconds (ms)	10 ^{-₃} s	kilohertz (KHz)	10 ³ Hz
microseconds (μs)	10 ^{–6} s	megahertz (MHz)	10 ⁶ Hz
nanoseconds (ns)	10 ^{–9} s	gigahertz (GHz)	10 ⁹ Hz
picoseconds (ps)	10 ⁻¹² s	terahertz (THz)	10 ¹² Hz

units of period and respective frequency

(a) Express a period of 100 ms in microseconds.

100 ms = 100×10^{-3} s = $100 \times 10^{-3} \times 10^{6}$ µs = 10^{5} µs

(b) Express the corresponding frequency in <u>kilo</u>hertz.

100 ms = 100 \times 10⁻³ s = 10⁻¹ s f = 1/10⁻¹ Hz = 10 \times 10⁻³ KHz = 10⁻² KHz

Simple Analog Signals

Frequency in Simple – rate of signal change with respect to time **Analog Signals** • change in a short span of time \Rightarrow high freq.

- change over a long span of time \Rightarrow low freq.
- signal does not change at all ⇒ zero freq.
 ??
- signal changes instantaneously $\Rightarrow \infty$ freq.

Time Domain Plot – specifies signal amplitude at each instant of time

does NOT express explicitly signal's phase and frequency

Frequency Domain Plot – specifies peak amplitude with respect to freq.
 phase CANNOT be shown in the frequency domain

Simple Analog Signals

Analog signals are best represented in the frequency domain.

Example [time vs. frequency domain]

http://hermes.eee.nott.ac.uk/teaching/cal/h61sig/sig0002.html

Fourier Analysis – <u>any composite signal</u> can be represented as a combination of simple sine waves with different frequencies, phases and amplitudes

Λ

S

$$s(t) = A_1 sin(2\pi f_1 t + \varphi_1) + A_2 sin(2\pi f_2 t + \varphi_2) + ...$$

 <u>periodic composite signal</u> (period=T, freq. = f₀=1/T) can be represented as a sum of simple sines and/or cosines known as *Fourier series*:

$$s(t) = \frac{A_0}{2} + \sum_{n=1} [A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t)]$$

With the aid of good table of integrals, it is easy to determine the frequency-domain nature of many signals.

 $B_n = \frac{2}{T} \int_0^T s(t) sin(2\pi n f_0 t) dt, \quad n = 1, 2, 3, ...$

 $A_n = \frac{2}{T} \int_{\Omega} s(t) \cos(2\pi n f_0 t) dt, n = 0, 1, 2, ...$

- f₀ is referred to as '<u>fundamental frequency</u>'
- integer multiples of f₀ are referred to as <u>harmonics</u>

Angular Frequency – aka radian frequency – number of 2π revolutions during a single period of a given signal

$$\omega = \frac{2\pi}{T} = 2\pi \cdot f$$

• simple multiple of ordinary frequency

$$\mathbf{s}(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t) \right]$$

$$A_n = \frac{2}{T} \int_0^T \mathbf{s}(t) \cos(n\omega_0 t) dt, \quad n = 0, 1, 2, ...$$

$$B_n = \frac{2}{T} \int_0^T \mathbf{s}(t) \sin(n\omega_0 t) dt, \quad n = 1, 2, ...$$

With three harmonics we get an approximation of a square wave. To get the actual square, all harmonics up to ∞ should be added.

http://www.nst.ing.tu-bs.de/schaukasten/fourier/en_idx.html http://www.phy.ntnu.edu.tw/java/sound/sound.html

Example [composite analog signal]

http://hermes.eee.nott.ac.uk/teaching/cal/h61sig/sig0009.html

Frequency Spectrum – range (set) of frequencies that signal contains of Analog Signal

Absolute Bandwidth – width of signal spectrum: B = f_{highest} - f_{lowest} of Analog Signal

Effective Bandwidth – range of frequencies where signal contains most of Analog Signal of its power/energy

Example [frequency spectrum and bandwidth of analog signal]

A periodic signal is composed of five sinewaves with frequencies of 100, 300, 500, 700 and 900 Hz.

What is the **bandwidth** of this signal?

Draw the **frequency spectrum**, assuming all components have a max amplitude of 10V.

Solution:

B = f_{highest} - f_{lowest} = 900 - 100 = 800 Hz

The spectrum has only five spikes, at 100, 300, 500, 700, and 900.

Composite Analog Signals (cont.)

What happens if $\tau \rightarrow 0$???

Composite Signals and – Transmission Medium

- no transmission medium is perfect each medium passes some frequencies and blocks or weakens others
 - composite signal sent at one end of transmiss. medium (comm. channel), may not be received in the same form at the other end
- passing a square wave through any medium will always deform the signal !!!

Channel Bandwidth – range of frequencies passed by the channel – difference between highest and lowest frequency that channel can satisfactorily pass

- Data vs. Signal
- Analog vs. Digital
- Analog Signals
 - Simple Analog Signals
 - Composite Analog Signals
- Digital Signals

Digital Signals – sequence of voltage pulses (DC levels) – each pulse represents a *signal element*

- binary data are transmitted using only 2 types of signal elements (1 = positive voltage, 0 = negative voltage)
- key digital-signals terms:
 - bit interval time required to send a single bit, unit: [sec]
 - bit rate number of bit intervals per second unit: [bps]

Most digital signals are aperiodic, so it is not appropriate / correct to talk about their period.

Digital Signals (cont.)

Digital Signal as a Composite Analog Signal

- digital signal, with all its sudden changes, is actually a composite signal having an infinite number of frequencies
- <u>a digital signal is a composite signal</u> <u>with an infinite bandwidth</u>
- if a <u>medium has a wide bandwidth</u>, a digital signal can be sent through it
 - some frequencies will be weakened or blocked; still, enough frequencies will be passed to preserve a decent signal shape
- what is the <u>minimum required bandwidth</u> B [Hz] of a <u>band-limited medium</u> if we want to send n [bps]?

Example [approximation of digital signal's spectrum using 1st harmonic]

Assume our computer generates 6 bps. Possibilities (periodic combinations) : 000000, 111111, 110011, 101010 etc.

1. Best case: min # of changes \Rightarrow min freq. of substitute analog signal

2. Worst case – max # of changes \Rightarrow max freq. of substitute analog signal

Exercise

- 1. Before data can be transmitted, they must be transformed to ______.
 - (a) periodic signals
 - (b) electromagnetic signals
 - (c) aperiodic signals
 - (d) low-frequency sinewaves
- 2. In a frequency-domain plot, the vertical axis measures the ______.
 - (a) peak amplitude
 - (b) frequency
 - (c) phase
 - (d) slope
- 3. In a time-domain plot, the vertical axis measures the _____.
 - (a) peak amplitude
 - (b) amplitude
 - (c) frequency
 - (d) time
- 4. If the bandwidth of a signal is 5 KHz and the lowest frequency is 52 KHz, what is the highest frequency ______.
 - (a) 5 KHz
 - (b) 10 KHz
 - (c) 47 KHz
 - (d) 57 KHz

Exercise

- 5. If one of the components of a signal has a frequency of zero, the average amplitude of the signal _____.
 - (a) is greater than zero
 - (b) is less than zero
 - (c) is zero
 - (d) (a) or (b)
- 6. Give two sinewaves A and B, if the frequency of A is twice that of B, then the period of B is ______ that of A.
 - (a) one-half
 - (b) twice
 - (c) the same as
 - (d) indeterminate from
- 7. A device is sending out data at the rate of 1000 bps.
 - (a) How long does it take to send out 10 bits?
 - (b) How long does it take to send out a single character (8 bits)?
 - (c) How long does it take to send a file of 100,000 characters?