MEMORY AND
PROGRAMMABLE LOGIC

e Memory 1s a device where we can store and
retrieve information

— It can execute a read and a write

 Programmable Logic 1s a device where we
can store and retrieve information

— It can also execute a read and a write

— The write 1s usually tricky

Types of Memory

So confusing that 1t 1s funny!
There are two types: RAM and ROM

RAM stands for Random Access Memory,
can perform both read and write and forgets
everything when unplugged from the power

Then why 1s it called RAM?

Go Figure

 The name RAM distinguishes it from a short
lived and now extinct serial access memory
(not to be confused with serital RAM)

e Sometimes it 1s called core memory (core 1s
the 1ron 1n an electromagnet or transformer!)

What about ROM

It 1s not a museum
Stands for Read Only Memory

It 1s not a memory. It 1s a programmable
device

Behaves more like a combinational circuit!

Writing and Programming

Writing 1s for memory

Programming 1s for Programmable Logic
Devices

Writing 1s (about) as fast, repeatable and
convenient as reading

Programming 1s not

Types of Programming

ROM: Mask Programming; done at the
factory

PROM: can be Programmed once by the user

EPROM: can be Erased (with UV) and
reprogrammed

EEPROM: can be Electrically Erased

Flash?

e It is EEPROM on hormones
— Huge capacity
— Can be erased section by section
— Can be erased many many times
— Threatens the Kingdom of Disk

Other PLDs?

ROM: Read Only Memory
PLA: Programmable Logic Array
PAL: Programmable Array Logic

— Lousy name, eh?

FPGA: Field Programmable Gate Arrays

ROM

e Can implement a truth table, bit by bit

e Can implement any logic function that has as
many 1nput as the ROM has address lines

and as many outputs as the word size of the
ROM

PLA

e Can implement simplified logic functions
e Has a programmable AND-OR network

e Can fit functions with up to a certain number
of prime implicants

PAL

e Like PLA but the OR part of the network 1s
not programmable.

e Less flexible than PLA, but this rarely causes
problems

Gate Arrays

e The mother of all PLDs

e Several regular PLDs with
— F-F connected to the outputs (bypassable)
— Interconnected to a programmable network

— Can contain many components like MUX, table-
look-ups etc

New Symbol

* We need a new symbol to accommodate
gates with large (possible) inputs

e Can be an AND or OR gate (or NAND,
NOR)

e Instead of the familiar octopus we use half
fish bone

(a) Conventional symbol (b) Array logic symbol

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

RAM

e There are two main types

— Static RAM, using regular latches and 1s
optimized for speed, typically used for DSP and
real time applications

— Dynamic RAM, using tiny capacitors, needs
periodic refreshing, optimized for size and used
for general computing

What about the others?

e SDRAM or SDR RAM: Single Data Rate
RAM, one datum per cycle when streaming

e DDR RAM: Double Data Rate, both posedge
and negedge output when streaming

e DRDRAM (Direct Rambus): more sensing
amplifiers, can stream longer

Memory Unit

n data inputs
n data outputs
READ, WRITE, ENABLE

k address lines

n data input lines

k address lines ——»|
Memory unit
Read ——— Zk words

) n bit per word
Write —— P

n data output lines

Fig. 7-2 Block Diagram of a Memory Unit

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Memory Contents

e Organized in 2k lines of n bytes each

e Looks suspiciously like a truth table

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Memory address

Binary

0000000000

0000000001

0000000010

1111111101
1111111110

1111111111

decimal

0

1021

1022

1023

Memory contest

1011010101011101

1010101110001001

0000110101000110

1001110100010100
0000110100011110

1101111000100101

Fig. 7-3 Content of a 1024 X 16 Memory

Read and Write Operations

e Read:
— Apply binary address
— Activate READ (and wait?)

* Write:
— Apply binary address
— Apply data

— Activate write

Timing

e Timing 1s complex

e Memory 1s slower and might not use the
system clock

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Clock

Memory
address

Memory
enable

Read/
Write
Data
mput

Clock

Memory

address

Memory
enable
Read/
Write

Data
output

<«— 20nsec —>

T1 2 T3 Tl
X Address valid X
_J/ [
A\ [
X Data valid X

(a) Write cycle

A

50 nsec

Y

71 12 173 T1

Address valid >C

LY

><Data valid >C

(b) Read cycle

Fig. 7-4 Memory Cycle Timing Waveforms

Commercial Systems

 Have much more complex timing structure
and protocols
— multiple accesses (read over write, etc)
— dual port
— streaming/strobing
— cache

— virtual memory

Basic Memory Cell

 The memory cell of SRAM has a latch
e has data input and output

e has read/write and enable control inputs

Select

|

Input

S D— Output

Read/Write

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

(a) Logic diagram

Fig. 7-5 Memory Cell

Input——->

l

Select

BC

— Output

!

Read/Write

(b) Block diagram

Internal Arrangement

e cells are arranged in matrix

T]
The enables are connected to the output of a
ecoder

C
the read/write 1s shared by all
t!

ne outputs of every column are ORed
together

Address
inputs

Memory
enable

Read/Write

© 2002 Prentice Hall, Inc.

M. Morris Mano

DIGITAL DESIGN, 3e.

—EN

Word 0

Word 1

2 X 4
decoder

Word 2

Word 3

Input data

Y

BC

\

Y

Y

Y

BC

Output data

Fig. 7-6 Diagram of a 4 X 4 RAM

Coincident Decoding

 We can split the decoder in two

e Use several two input AND gates

5 X 32 decoder

o1 2. .. .20 . . . 3l
0
1
2 /\
] . binary address
5X32 ' 01100 10100
X decoder X Y
— 12 *
31 *—o ®

Fig. 7-7 Two-Dimensional Decoding Structure for a 1K-Word Memory

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Address Multiplexing

e To reduce the number of address pins we can
multiplex address pins

 We have to indicate i1f we provide column or
address bits

— Column Address Strobe
— Row Address Strobe

Y

CAS

RAS

8-bit

address

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Y

8-bit
row
register

Fig. 7-8 Address Multiplexing for a 64K DRAM

Y

8 X 256
decoder

8-bit column
register

Y

8 X 256
decoder

Y

256 X 256
memory
cell array

<— Read/Write

Data Data
in out

Address
inputs

Memory
enable

Read/Write

© 2002 Prentice Hall, Inc.

M. Morris Mano

DIGITAL DESIGN, 3e.

—EN

Word 0

Word 1

2 X 4
decoder

Word 2

Word 3

Input data

Y

BC

\

Y

Y

Y

BC

Output data

Fig. 7-6 Diagram of a 4 X 4 RAM

Error Detection and Correction

e Bits in memory are known to flip
spontaneously

e Maybe cosmic rays, maybe radioactive
1sotopes in the material that goes in

e Miniaturization does not help

ECC

Technology developed mainly for
communications

Also used for CDs, hard disks
Great variety of methods
Interesting mathematics

Most are related to parity

Hamming Code

* One of the oldest and most used
e Good for spontaneous errors
— not good for burst errors

e In the simplest form can correct one error

— and get confused with two errors

Example of a Hamming
Code

NN First, second and fourth bit are parities
EEEN Even Parity
BN BN Even parity
BEEn Even Parity

Encoding

* Place the data bits in the 3" 5" 6" and 7"
position

e Compute the values in the 1%, 2" and 4"
position

 We can compute each one independently.

Decoding

e Check the three parities

— write O 1f the parity 1s correct

— write 1 1f the parity 1s incorrect
e Write the third one first, the first one third

e If the parities form a 000, the 7 bits were
stored and retrieved correctly

Correction

— 001 the 1* bit is wrong
— 010 the 2™ bit is wrong
— 011 the 3" bit is wrong
— 100 the 4" bit is wrong
— 101 the 5" bit is wrong

— 110 the 6™ bit is wrong

— 111 the 7™ bit is wrong

Easy to trick

If there are two errors say 1* and 2™ bits

The parities will be 011

The system will smile and correct 3" bit
We end up with three errors
Rats!

Do not Despair

How about if we add another bit that checks
the parity of the whole word

It t
It t
It tl

1C

1C

1€

It tl

1€

parity 1s 0000, everything 1s OK
parity 1s 1000 the new bit 1s wrong

parity 1s Oxxx we have 2 errors

parity 1s 1xxx we correct 1 error

How to Generalize

e Itis quite complex but the 1dea 1s simple

e Define the Hamming Distance between two
words as:

— the number of bits they differ

e [If there 1s an error in a word then 1ti1s 1 H.D.
from the original

How to Generalize

e Define a code such that the valid (correct)
words are at least 3 H.D. apart to correct 1
error, at least 5 H.D. apart to correct two
errors etc

ROM

Looks like RAM

Once programmed 1t 1s like a combinational
circuit

We can store the truth table on 1t and have a
ready made combinational circuit

Unfortunately, with every new input we
double the size

2K X pn

k inputs (address) ——
ROM

——> n outputs (data)

Fig. 7-9 ROM Block Diagram

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

5% 32
decoder

28

29

30

31

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Fig. 7-10 Internal Logic of a 32 X 8§ ROM

ROM Truth Table (partial)

Outputs
A7 A6 A5 A4 A3 A2A1 A0

Inputs
1413121110

O -0

— OO

o B o B o B @)

O -+0OO0O

—N = O -

— O O

OO -HO

O - -

OO
OO+
O OOoOOo
O OOoOOo
O OOoOOo

O

—

o o

— O
o -

o -
— O

o o

o
—
—
—
—

5% 32
decoder

28
29
30
31

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Fig. 7-11 Programming the ROM According to Table 7-3

We can Mix and Match

e Sometimes we can implement part of the
function as regular combinational circuit and
part of the function (the one that 1s not
amenable to simplification) using ROM

 Here B_0O and B_1 are very simple and can
be implemented trivially

B
0—— By
B
A
B3
Aq 8 X 4 ROM
Asy By
Bs
(a) Block diagram

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Fig. 7-12 ROM Implementation of Example 7-1

A, A; Ay Bs B, B; B
0 0 0/0 0 0 O
0 0 1,0 0 0 0
01 0/0 0 0 1
01 1,0 0 1 0
1 0 0/0 1 0 0
1 0 1/0 1 1 0
1 1 0/1 0 0 1
1 1 1]/1 1 0 0

(b) ROM truth table

PLDs

e ROM1s aPLD

 We can think of 1t as having two parts

— The AND part is complete (whole decoder) and
not programmable

— The OR part 1s programmable.

Other PLDs

e Can have the AND programmable and the
OR fixed (PAL)

e Can have both programmable (PLA)

Inputs

Inputs

Y

Fixed
AND array
(decoder)

Y

programmable
OR array

— Outputs

(a) Programmable read-only memory (PROM)

Inputs

Y

programmable
AND array

Y

Fixed
OR array

—— Outputs

(b) Programmable array logic (PAL)

© 2002 Prentice Hall, Inc.

M. Morris Mano
DIGITAL DESIGN, 3e.

programmable
AND array

Y

programmable
OR array

— Outputs

(c) Programmable logic array (PLA)

Fig. 7-13 Basic Configuration of Three PLDs

Sharing Implicants

 We try to have the two functions share
implicants

 We attempt to minimize both the function
and 1ts complement (PLAs usually have

either NAND-NAND or NOR-NOR
implementation, but not both)

Calculating the Cost

e The bottom line of the cost is the price of the
chip that fits the design.

e One has to try all (or at least many)
technologies

e Take into account non-technical restrictions

Example

e The two functions we need to implement are
- F1=AB" + AC+ A’'BC
- F2 =(AC + BC)’

S1O1CAS

C C'"B B"A A’ (7

AB’

AC

BC

A'BC’
0
1

Fig. 7-14 PLA with 3 Inputs, 4 Product Terms, and 2 Outputs

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Another Example

 The two functions are
— F1(A,B,C) = Sum(0,1,2.4)
_ F2(A,B,C) = Sum(0,5,6,7)
e The solution 18

_Fl=(AB+AC+BC)
_F2=AB+AC+A’B'C’

The Reason 1S

They share two implicants
Which makes it easier to fit on a smaller chip

It this chip did not exist or was too slow then
we should try something else

Hardware compilers allow us to do it easily

BC B

00 01 11 10

C
F1=A'B"+A'C'+ B'C’
F1 =(AB + AC + BC)'

AB

AC

BC

A fB! Cf
© 2002 Prentice Hall, Inc.

M. Morris Mano
DIGITAL DESIGN, 3e.

BC B
00 01 11 10
A
1 0 0 0
0
At1l o 1 1 1

C
Fy=AB + AC+ A'B'C’
Fy=(A'C+A'B+ AB'C')’

PLA programming table

Outputs

Product Inputs (C) (T
tee]m A B C F F>

1 1 1 - 1 1
2 1 -1 1 1
3 -1 1 1 -

4 0 0 O - 1

Fig. 7-15 Solution to Example 7-2

AND gates inputs

Product 123456782910
term
1

2

3

i
Lz |
4 Dj_r\
5 D)
6 DJ_L/
LT3
.
8 C—E‘ ——F3
9
I; >
10
1 %} S F
12
Iy 1%

12345678910

Fig. 7-16 PAL with Four Inputs, Four Outputs, and Three-Wide AND-OR Structure

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

Example for PAL

e The four functions are:
- w(A,B,C,D) =Sum(2,12,13)

— X(A,B,C,
- y(A,B,C,

D) = Sum(7,8,9,10,11,12,13,14,15)
D) = Sum(0,2,3.,4,5,6,7,8,10,11,15)

— 7z(A,B,C,

D) = Sum(1,2,8,12,13)

The Best Solution

- w=ABC" A’B’CD’

-x=A+BCD

-y=ABC + A°’B’'CD’ + AC’'D’ + A’B’C’D
-z=w+ACD+ A’'B’C’'D

AND gates inputs

Product AA' BB CC' DD ww'
term —,L
1 D
2),
3 ﬁﬁ/
P — <
! Dlr\
5
./
6 %
N All fuses intact
B —1=
(always = 0)
7 DL\
8) y
9 D_FL/
c—TI%
0 D
11)
D _L? = Fuse intact
+ Fuse blown
© 2002 Prentice Hall, Inc. AABBCCDD ww'
M. Morris Mano
DIGITAL DESIGN, 3e.

Fig. 7-17 Fuse Map for PAL as Specified in Table 7-6

Sequential PLDs

Why not add a few flip-flops to the mix

Sequential circuits consist of a combinational
circuit and a few tlip-flops

This 1s easy to do but then we got greedy and
added a lot of things

Too many things to handle w/o software

The Major Players

e Sequential (or Simple) PLD (SPLD)
 Complex PLD (CPLD)
e Field Programmable Gate Array (FPGA)

Inputs

Y

AND-OR array
(PAL or PLA)

Y

Flip-flops

Fig. 7-18 Sequential Programmable Logic Device

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

-
y

Outputs

Macrocell

e The basic component of most of them 1is the
macrocell

e Consists of a F-F and its attendant
combinational logic

e To make life more complex they can share
implicants etc

CLK OE

[
o

Fig. 7-19 Basic Macrocell Logic

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

V

The CPLD

e Many SPLDs connected to a programmable
switch matrix

e I/O block (programmable)

/O

block

Y

2~
—
Q
ag
—
o
3
=
o)
=
a
72!
£
—
(@]
=
3
o
=
;.
A

/O

block

PLD PLD PLD PLD

Fig. 7-20 General CPLD Configuration

© 2002 Prentice Hall, Inc.

M. Morris Mano

DIGITAL DESIGN, 3e.

FPGA

e A gate array with many extra circuits like
look-up-tables, decoders etc

e Added components like PCI or USB
controllers.

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

20

D
/4

D,
/>
/ Dxe D3
3 ROM p,
/4

Ds
/s

Dg

Fig. P7-17

100

101

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

