CSE2001

Test 1

This test lasts 75 minutes. No aids allowed.

Make sure your test has 5 pages, including this cover page.

Answer in the space provided. (If you need more space, use the reverse side of the page and indicate **clearly** which part of your work should be marked.)

Write legibly.

Question 1	/3
Question 2	/4
Question 3	/3
Question 4	/3
Question 5	/4
Question 6	/4
Total	/21

1. [3 marks] Give a high-level description of how a non-deterministic finite automaton can be transformed into a deterministic finite automaton that accepts the same language. Your answer must fit inside the box below. Anything written outside the box will be ignored.

2. [4 marks] Draw the transition diagram of a deterministic finite automaton that accepts the language of binary strings whose last 3 characters are 101. (You do *not* have to prove your answer is correct.)

3. [3 marks] List all strings of length 7 in the language represented by the regular expression $(ac)^*(bba \cup aa \cup \varepsilon)^*$.

4. [3 marks] Write down a regular expression for the language accepted by the following nondeterministic finite automaton. (You do *not* have to prove your answer is correct.)

5. [4 marks] For any language L over the alphabet Σ , let DROP(L) be the language containing all strings that can be obtained from any string in L by deleting exactly one character. More precisely,

 $DROP(L) = \{xy : x, y \in \Sigma^* \text{ and for some } a \in \Sigma, xay \in L\}.$

Given a deterministic finite automaton $(Q, \Sigma, \delta, q_0, F)$ for L, provide a precise definition of a non-deterministic finite automaton $(Q', \Sigma, \delta', q_0, F')$ for DROP(L).

6. [4 marks] Let L be the language of binary strings of odd length whose middle character is a 1. In other words, $L = \{x1y : x, y \in \{0, 1\}^* \text{ and } |x| = |y|\}$. Prove that L is not regular.