
Check06C

Number of students enrolled in the course: 209

Number of students that eChecked Check05C: 17 (8%)



Check07C

Number of students enrolled in the course: 198

Number of students that eChecked Check07C: 18 (9%)



Check08A

Number of students enrolled in the course: 191

Number of students that eChecked Check08A: 14 (7%)



Aggregation

Investment Stock String
1 1



Composition

String CreditCard Date
1 2



Collection

Portfolio Investment Stock
* 1



Collection

We distinguish between

static allocation: the maximum number of elements
(capacity) is fixed when the collection is created

dynamic allocation: the number of elements is unbounded

and

list: duplicates are allowed and the elements are ordered

set: duplicates are disallowed and the elements are not ordered



Traversals

for each element of the collection

...

We distinguish two types of traversals:

indexed traversals

Iterator-based traversals



Indexed Traversals

... collection = ...

...

for (int i = 0; i < collection.size(); i++)

{

... element = collection.get(i);

...

}



Indexed Traversals

... collection = ...

...

for (int i = 0; i < collection.size(); i++)

{

... element = collection.get(i);

...

}

Question

Print all investments (one per line) of a random portfolio.



Indexed Traversals

Question

Which collections support indexed traversals?



Indexed Traversals

Question

Which collections support indexed traversals?

Answer

Those that contain the methods size() and get(int).



Iterator-Based Traversals

CollectionOfTs

iterator() : Iterator

Iterator

hasNext() : boolean

next() : T



Iterator-Based Traversals

CollectionOfTs

iterator() : Iterator<T>

Iterator<E>

hasNext() : boolean

next() : E

T is a type (class name) and E is a type parameter (we come back
to this in Section 9.3.3).



Iterator-Based Traversals

... collection = ...

...

Iterator<...> iterator = collection.iterator();

while (iterator.hasNext())

{

... element = iterator.next();

...

}

The above can be abbreviated using the advanced for loop:

... collection = ...

...

for (... element : collection)

{

...

}



Iterator-Based Traversals

... collection = ...

...

for (... element : collection)

{

...

}



Iterator-Based Traversals

... collection = ...

...

for (... element : collection)

{

...

}

Question

Print all creditcards (one per line) of a random creditcard centre.



Iterator-Based Traversals

Question

Which collections support iterator-based traversals?



Iterator-Based Traversals

Question

Which collections support iterator-based traversals?

Answer

Those that contain the method iterator().



Iterator-Based Traversals

Question

Which collections support iterator-based traversals?

Answer

Those that contain the method iterator().

Question

Which collections support the advanced for loop?



Iterator-Based Traversals

Question

Which collections support iterator-based traversals?

Answer

Those that contain the method iterator().

Question

Which collections support the advanced for loop?

Answer

Those that implement Iterable (we come back to this in
Chapter 10).



Smallest Integer

Question

Write an app that takes an number of integers are command line
arguments and prints the smallest.



Smallest Integer

Question

Which of the two solutions is better?



Smallest Integer

Question

Which of the two solutions is better?

Answer

The app Fast.



Smallest Integer

Question

Which of the two solutions is better?

Answer

The app Fast.

Question

Why?



Smallest Integer

Question

Which of the two solutions is better?

Answer

The app Fast.

Question

Why?

Answer

It is more efficient (that is, it is faster).



Smallest Integer

Question

How would you prove that?



Smallest Integer

Question

How would you prove that?

Answer

Time the app.



Smallest Integer

Question

How would you prove that?

Answer

Time the app.

Question

How often? Which inputs?



Which Machine?

Research by undergraduate student Trevor Brown and graduate
student Joanna Helga.



Inheritance

Add some simple data to already existing complex data.

For the resulting data, add new operations (mainly to handle the
added simple data) and possibly redefine some of the operations of
the complex data.



Inheritance

Inheritance was invented in 1967 for the object-oriented
programming language Simula.

“Inheritance is an object-oriented technique that allows you to
re-use code across related objects in your applications.”
Source: www.objectorientedcoldfusion.org/wiki/Inheritance

“Item 14: Favor composition (aggregation) over inheritance.”
Source: Joshua Bloch. Effective Java: Programming Language

Guide. Addison-Wesley. 2001.



Inheritance

Definition

Inheritance is a binary relation on classes. The pair (C ,P) of
classes is in the inheritance relation if the API of the class C
(child) contains

class C extends P

The API of the class P (parent) may (but does not have to)
contain

Direct Known Subclasses: C

The inheritance relation is also known as the is-a relation. Instead
of saying that (C ,P) is in the inheritance relation, we often simply
say that C is-a P .



Inheritance

Example

RewardCard is-a CreditCard

CEStudent is-a Student

ITStudent is-a Student

SEStudent is-a Student



Inheritance

Definition

C is a superclass of P if C is-a P .

P is a subclass of C if C is-a P .

Example

Student is a superclass of CEStudent

RewardCard is a subclass of CreditCard



UML Diagrams

CreditCard

RewardCard



UML Diagrams

Object

CreditCard

RewardCard



UML Diagrams

Object

Student

CEStudent ITStudent SEStudent



Inheritance

Definition

A programming language supports single inheritance if each class
has at most one superclass.

A programming language supports multiple inheritance if each
class may have multiple superclasses.

Example

Java supports single inheritance.

Eiffel supports multiple inheritance.



A Class Consists of

constructors,

attributes, and

methods.



Constructors

Constructors are not inherited from the superclass.



In a Well-Designed Class

all non-final attributes are private (page 77).

We will restrict ourselves to such well-designed classes.



Attributes

All public non-static final attributes are inherited from the
superclass.

For a well-designed class, these are the only non-static attributes of
which a client is aware. The other non-static attributes are
relevant to the implementer and are considered in CSE1030.

Static attributes are not inherited. They can be accessed via the
superclass (name).



Attributes

Question

Assume that the class P has a public non-static final attribute
named a. Can its subclass C also contain a public non-static final
attribute named a?



Attributes

Question

Assume that the class P has a public non-static final attribute
named a. Can its subclass C also contain a public non-static final
attribute named a?

Answer

Yes. In that case, the attribute a of the subclass C is said to
shadow the attribute a of the superclass P .

However, why would one ever introduce two different constants
with the same name? In well-designed classes, such a situation
never arises.



Methods

All public non-static methods are inherited from the superclass.

The private non-static methods are relevant to the implementer
and are considered in CSE1030.

Static methods are not inherited. They can be invoked via the
superclass (name).



Methods

Question

Assume that the class P has a public non-static method with
signature (method name and parameter types) s. Can its
subclass C also contain a public non-static method with signature
s?



Methods

Question

Assume that the class P has a public non-static method with
signature (method name and parameter types) s. Can its
subclass C also contain a public non-static method with signature
s?

Answer

Yes. In that case, the method with signature s of the subclass C is
said to override the method with signature s of the superclass P .



Methods

We can distinguish between

inherited methods

overridden methods

new methods



Drop deadline

November 12

Until this date you can drop the course without getting a grade for
it and, hence, it will not affect your gpa.


