Static Attributes

Question
How do you use a static attribute a of a class C?

Static Attributes

Question

How do you use a static attribute a of a class C?

Answer

C. a

Static Attributes

Question

How do you use a static attribute a of a class C?
Answer
C. a

Question

How do you print the value of the static attribute PI of the class Math?

Static Attributes

Question

How do you use a static attribute a of a class C?
Answer
C. a

Question

How do you print the value of the static attribute PI of the class Math?

Answer

output.println(Math.PI);

Static Methods

Question

How do you use a static method m of a class C?

Static Methods

Question

How do you use a static method m of a class C？

> Answer
> C.m(. .)

Static Methods

Question

How do you use a static method m of a class C?

Answer

```
C.m(...)
```


Question

How do you print the value of $2.0^{10.0}$ using the static method pow of the class Math?

Static Methods

Question

How do you use a static method m of a class C ?

Answer

```
C.m(...)
```


Question

How do you print the value of $2.0^{10.0}$ using the static method pow of the class Math?

Answer

final double BASE = 2.0;
final double EXPONENT = 10.0;
output.println(Math.pow(BASE, EXPONENT));

Non-Static Methods

Question

How do you use a non-static method m of a class C ?

Non-Static Methods

Question

How do you use a non-static method m of a class C ?

Answer
o.m(...) where o is an object reference of type C.

Non-Static Methods

Question

How do you use a non-static method m of a class C ?

Answer

o.m(...) where o is an object reference of type C.

Question

How do you print the value of $\frac{2}{3}$ using the non-static method toString of the class Fraction?

Non-Static Methods

Question

How do you use a non-static method m of a class C ?

Answer

o.m(...) where o is an object reference of type C.

Question

How do you print the value of $\frac{2}{3}$ using the non-static method toString of the class Fraction?

Answer

Fraction fraction = new Fraction(2, 3); output.println(fraction.toString());

Static Attributes

Question

Where in our memory diagrams do you find the static attribute PI of the class Math?

Static Attributes

Question

Where in our memory diagrams do you find the static attribute PI of the class Math?

Answer

	Math class block
PI	3.141592653589793

Only the Math class has the PI attribute.

Non-Static Attributes

Question

Where in our memory diagrams do you find the non-static attribute numerator of the class Fraction?

Non－Static Attributes

Question

Where in our memory diagrams do you find the non－static attribute numerator of the class Fraction？

Answer

	230
	Fraction object block
numerator	2
denominator	3
410	Fraction object block
numerator	1
denominator	4

Each Fraction object has a numerator attribute．

Check03A

Number of students enrolled in the course: 225
Number of students that eChecked Check03A: 70 (31\%)

Check04D

Number of students enrolled in the course: 215
Number of students that eChecked Check03A: 46 (21\%)

Programming Test 2

Number of students that submitted a program: 202
Number of programs that did not compile: 77 (38\%)
If the program you submit does not compile, then the maximal mark for that program is 4 (out of 10).

Structure of our apps

```
public class ...
{
    public static void main(String[] arguments)
    {
    }
}
```


Ingredients of the main Method

Question
Which "instructions" do we use in the main method?

Ingredients of the main Method

Question

Which "instructions" do we use in the main method?

Answer

- declarations
type variable;
- assignments
variable = expression;
- method invocations

Class.method(arguments) ; and object.method(arguments);

Many problems cannot be solved using only the above "instructions."

Control Structures CSE 1020

October 6, 2010

Control Structures

- if statement
- if-else statement
- switch statement
- for statement
- while statement
- do statement

Any of the last three control structures makes Java a so-called Turing complete language.

Turing completeness

Definition

A programming language is Turing complete if a simulator of a Turing machine can written in the programming language.

This notion will be covered in more detail in the course "Introduction to the Theory of Computation" (CSE 2001).

Alan Turing

Alan Turing (June 23, 1912June 7, 1954) was an English mathematician. He formalized the notion of computation by means of a machine. This machine was later named the Turing machine. The Turing award, the "Nobel prize of computing" is named after him.

source: ieee.org

Problem5_1

Problem

Prompt the user for their percentage grade by printing Enter your mark (0.0-100.00):
so that the grade is entered by the user on the same line as the prompt. On the next line, print

Passed?

followed by true if the grade is greater than or equal to 50.0 , and false otherwise.

Problem5_2

Problem

Prompt the user for their percentage grade by printing Enter your mark (0.0-100.00):
so that the grade is entered by the user on the same line as the prompt. On the next line, print

Passed

if the grade is greater than or equal to 50.0, and Failed
otherwise.

Problem5_3

Problem

Prompt the user for their percentage grade by printing Enter your mark (0.0-100.00):
so that the grade is entered by the user on the same line as the prompt. On the next line, print the corresponding letter grade (A, B, C, D, E or F).

Problem5_4

Problem

Prompt the user for their letter grade by printing
Enter your mark (A-F):
so that the grade is entered by the user on the same line as the prompt. On the next line, print the corresponding percentage grade (0.0-100.0).

Sir Charles Antony Richard Hoare (born January 11, 1934) is a British computer scientist. He is best known for the development of Quicksort, an algorithm to sort elements. He also proposed the switch statement. In 1980, he received the Turing award.

source:
research.microsoft.com

Problem5_5

Problem

Prompt the user for a non-negative integer
Enter a non-negative integer:
so that the integer n is entered by the user on the same line as the prompt. On the next line, print $n *$'s.

Loop Invariant

Definition

Given a loop, a boolean expression is a loop invariant of the loop if it holds at the beginning of every iteration of the loop.
C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM, 12(10): 576-580, October 1969.

Loop Invariant

Consider the loop
for (int $i=0 ; i<n ; i++)$
\{
output.print("*");
\}
Loop invariants for this loop are

Loop Invariant

Consider the loop
for (int $i=0 ; i<n ; i++)$
\{
output.print("*");
\}
Loop invariants for this loop are

- true

Loop Invariant

Consider the loop
for (int i $=0$; $\mathrm{i}<\mathrm{n}$; i++)
\{
output.print("*");
\}
Loop invariants for this loop are

- true
- $\mathrm{i} \geq 0$

Loop Invariant

Consider the loop
for (int $i=0 ; i<n ; i++)$
\{
output.print("*");
\}
Loop invariants for this loop are

- true
- $\mathrm{i} \geq 0$
- $i \leq n$

Loop Invariant

Consider the loop
for (int $i=0 ; i<n ; i++)$
\{
output.print("*");
\}
Loop invariants for this loop are

- true
- $\mathrm{i} \geq 0$
- $\mathrm{i} \leq n$
- i *'s have been printed

Loop Invariant

Consider the loop
for (int $i=0 ; i<n ; i++)$
\{ output.print("*");
\}
Loop invariants for this loop are

- true
- $i \geq 0$
- $\mathrm{i} \leq n$
- $i *$'s have been printed
- $i \geq 0 \& \& i \leq n \& \& i *$'s have been printed

Problem5_6

Problem

Prompt the user for a non-negative integer Enter a non-negative integer:
so that the integer n is entered by the user on the same line as the prompt. On the next line, print $1,2, \ldots n-1, n$, separated by a single space.

Problem5_7

Problem

Prompt the user for a positive integer
Enter a positive integer:
so that the integer n is entered by the user on the same line as the prompt. On the next line, print

$$
n \text { is prime }
$$

if n is prime and

$$
n \text { is not prime }
$$

otherwise.

Problem5_8

Problem

Prompt the user for a file name
Enter a file name:
so that the name is entered by the user on the same line as the prompt. Print the content of the file.

For and While Loops

Theorem

Every for loop can be expressed as a while loop.

Proof.

```
for ( }\mp@subsup{s}{1}{\prime;}b;\mp@subsup{s}{2}{}
{
```

 \(S_{3}\);
 \}
can be expressed as
\{
s_{1};
while (b)
\{
S_{3};
S_{2};
\}
\}

For and While Loops

Theorem

Every while loop can be expressed as a for loop.

Problem5_9

Problem

Prompt the user for two positive integers
Enter the number of rows:
Enter the number of columns:
so that the integers r and c are entered by the user on the same line as the prompts. Print r lines each consisting of $c *$'s.

Problem5_10

Problem

Prompt the user for a positive integer
Enter a positive integer:
so that the integer n is entered by the user on the same line as the prompts. Print a line with $1 *$, a line with $2 *$'s, ..., a line with $n-1$ *'s, and a line with $n *$'s.

Problem5_11

Problem

Prompt the user for a positive integer
Enter a positive integer:
so that the integer n is entered by the user on the same line as the prompts. Prompt the user for a file name

Enter a file name:
so that the name is entered by the user on the same line as the prompts. Print a line with $1 *$, a line with $2 *$'s, ..., a line with $n-1 *$'s, and a line with $n *$'s to the given file.

Problem5_12

Problem

Prompt the user for a positive integer
Enter a positive integer:
so that the integer n is entered by the user on the same line as the prompts. Print a line with $1 *$, a line with $2 *$'s, \ldots, a line with $n-1$ *'s, and a line with $n *$'s. Crash if the user enters a non-positive integer.

Problem5_13

Problem

Prompt the user for a positive integer
Enter a positive integer:
so that the integer n is entered by the user on the same line as the prompts. Print a line with $1 *$, a line with $2 *$'s, ..., a line with $n-1 *$'s, and a line with $n *$'s. Reprompt the user if they enter a non-positive integer.

For and Do Loops

Theorem

Every for loop can be expressed as a do loop.

Theorem

Every do loop can be expressed as a for loop.

Question

So which loop should we use?

For and Do Loops

Theorem

Every for loop can be expressed as a do loop.

Theorem

Every do loop can be expressed as a for loop.

Question

So which loop should we use?

Answer

It is a matter of taste. If you know the number of iterations in advance, a for loop may be most appropriate. If the loop has to be executed at least once, a do loop may be most appropriate.

