Relations and Their Properties

Jing Yang
November 26, 2010
Review

For two sets A and B:

- Cartesian product $A \times B$
- Function from A to B
- Binary relation from A to B
A binary relation R from a set A to a set B is a subset $R \subseteq A \times B$

- No restrictions on relations as on functions

Relations can be represented graphically: A directed graph D from A to B is a collection of vertices $V \subseteq A \cup B$ and a collection of edges $R \subseteq A \times B$. If there is an ordered pair $e = \langle x, y \rangle$ in R then there is an arc or edge from x to y in D.

Binary Relation
Example: \(A = \{a,b,c\}, \ B = \{1,2,3,4\} \)

\(R = \{\langle a,1\rangle, \langle a,2\rangle, \langle c,4\rangle\} \)

Definition: A binary relation \(R \) on a set \(A \) is a subset of \(A \times A \) or a relation from \(A \) to \(A \).

Example:
- \(A = \{a, b, c\} \)
- \(R = \{\langle a, a\rangle, \langle a, b\rangle, \langle a, c\rangle\} \).

Then a digraph representation of \(R \) is:

\[\begin{array}{c}
\text{a} & \rightarrow & \text{1} \\
\text{b} & \rightarrow & \text{2} \\
\text{c} & \rightarrow & \text{3, 4}
\end{array}\]

Note: An arc of the form \(\langle x, x\rangle \) on a digraph is called a loop.

Question: How many binary relations are there on a set \(A \)?
A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A.

Eg. $A = \{a, b, c\}$, $R = \{<a, a>, <a, b>, <a, c>\}$

Q: How many binary relations are there on a set A?
Properties of Relations

Given a binary relation R on a set A

- R is reflexive iff $\forall x(x \in A \rightarrow <x,x> \in R)$
- R is symmetric iff $\forall x \forall y (<x,y> \in R \rightarrow <y,x> \in R)$
- R is antisymmetric iff $\forall x \forall y (<x,y> \in R \land <y,x> \in R \rightarrow x = y)$
- R is transitive iff $\forall x \forall y \forall z$
 $(<x,y> \in R \land <y,z> \in R \rightarrow <x,z> \in R)$
A: not reflexive
symmetric
antisymmetric
transitive

B: not reflexive
not symmetric
not antisymmetric
not transitive

C: not reflexive
not symmetric
antisymmetric
not transitive

D: not reflexive
not symmetric
antisymmetric
transitive
Combining Relations

Two relations can be combined in any way two sets can be combined, using U, \cap or \setminus.

Eg. $A=\{1,2,3\}$, $B=\{1,2,3,4\}$, $R_1=\{(1,1),(2,2),(3,3)\}$, $R_2=\{(1,1),(1,2),(1,3),(1,4)\}$, what is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$?

If R_1 and R_2 are transitive on A, does it follow that $R_1 \cup R_2$ is transitive?
Composition

Suppose \(R_1 \) is a relation from \(A \) to \(B \), \(R_2 \) is a relation from \(B \) to \(C \), then the composition of \(R_2 \) with \(R_1 \), denoted \(R_2 \circ R_1 \) is a relation from \(A \) to \(C \), such that if \(<a, b> \in R_1 \) and \(<b, c> \in R_2 \), then \(<a, c> \in R_2 \circ R_1 \).

\(R_2 \circ R_1 \) V.S. \(F_2 \circ F_1 \)

\[
R_2 \circ R_1 = \{<b, D>, <b, B>\}
\]
Let R be a relation on set A, the powers R^n, $n=1,2,3\ldots$ are defined recursively by:

- $R^1 = R$
- $R^{n+1} = R^n \circ R$

Eg. Let $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Find R^n, $n=2,3,4\ldots$
Theorem: \(R \) is transitive on a set \(A \) iff \(R^n \subseteq R \) for \(n > 0 \)

Proof:
1. \(R^n \subseteq R \) \(\rightarrow \) \(R \) is transitive

Assume \(R^n \subseteq R \). In particular, \(R^2 \subseteq R \).

If \((a,b) \in R \), \((b,c) \in R \), then \((a,c) \in R^2 \). Therefore, \((a,c) \in R \). So \(R \) is transitive.

2. \(R \) is transitive \(\rightarrow \) \(R^n \subseteq R \)

Basis: \(R^1 \subseteq R \)

Inductive step: Assume \(R^k \subseteq R \), need to show \(R^{k+1} \subseteq R \)

Because \(R^{k+1} = R^k \circ R \), if \((a,b) \in R^{k+1} \) then there is an element \(x \in A \) such that \((a,x) \in R \) and \((x,b) \in R^k \). Because \(R^k \subseteq R \), \((x,b) \in R \). Because \(R \) is transitive, \((a,b) \in R \).
Reading and Notes

- Compare Relations and Functions
- Recommended exercises: 8.1: 3, 7, 35, 41, 43, 53