Solving Linear Recurrence Relations

Jing Yang November 22, 2010

1

Overview

- Solve recurrence relations: find a formula for {a_n}
- Easy: for a_n=2a_{n-1}, a₀=1, the solution is a_n=2ⁿ (back substitute)
- Difficult: for a_n=a_{n-1}+a_{n-2}, a₀=0, a₁=1, how to find a solution?

Linear Homogeneous Recurrence Relations of degree k with constant coefficients

Solving a recurrence relation can be very difficult unless the recurrence equation has a special form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ where $c_1, c_2, ..., c_k \in \mathbb{R}$ and $c_k \neq 0$

□ Single variable: n

 \square Linear: no $a_i a_j, a_i^2, a_i^3...$

□ Constant coefficients: ci∈R

 \square Homogeneous: all terms are multiples of the a_i s

3

 \square Degree k: $c_k \neq 0$

Example

 $\sqrt{a_n}=1.02a_{n-1}+a_{n-2}$ linear, constant coefficients, homogeneous, degree 2 $\sqrt{a_n}=1.02a_{n-3}$ linear, constant coefficients, homogeneous, degree 3 $-a_n=1.02a_{n-1}+2^{n-1}$ linear, constant coefficients, nonhomogeneous, degree 1 $-a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2^{n-1}$ linear, constant coefficients, nonhomogeneous, degree 3 $-a_n=Ca_{n+m}$ $- a_n = na_{n-1} + n^2 a_{n-2}$ linear, coefficients are not constant, homogeneous, degree 2 $- a_n = a_{n-1}a_{n-2}$

nonlinear, constant coefficients, homogeneous, degree 2

Solution Procedure

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ where $c_1, c_2, ..., c_k \in \mathbb{R}$ and $c_k \neq 0$

1. Put all a_i 's on LHS of the equation: $a_n-c_1a_{n-1}-c_2a_{n-2}-...-c_ka_{n-k}=0$ 2. Assume solutions of the form $a_n=r^n$, where r is a constant 3. Substitute the solution into the equation: $r^{n}-c_{1}r^{n-1}-c_{2}r^{n-2}$...- $c_{k}r^{n-k}=0$. Factor out the lowest power of r: $r^{k}-c_{1}r^{k-1}-c_{2}r^{k-2}$...-c_k=0 -- called the characteristic equation 4. Find the k solutions r_1 , r_2 , ..., r_k of the characteristic equation (characteristic roots of the recurrence relation) 5. If the roots are distinct, the general solution is $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$ Theorem! 6. The coefficients $\alpha_{1}, \alpha_{2}, \dots, \alpha_{k}$ are found by enforcing the initial

5

conditions

Example – 1

- Solve $a_{n+2}=3a_{n+1}$, $a_0=4$
- $a_{n+2}-3a_{n+1}=0$
- \circ rⁿ⁺²-3rⁿ⁺¹=0, i.e. r-3=0
- The Find the root of the characteristic equation $r_1=3$
- Compute the general solution $a_n = \alpha_1 3^n$
- Find α_1 based on the initial conditions: $a_0 = \alpha_1(3^0)$ or $\alpha_1 = 4$
- Produce the solution: $a_n = 4(3^n)$

Example - 2

Solve $a_n = 3a_{n-2}$, $a_0 = a_1 = 1$

- $a_n 3a_{n-2} = 0$
- \circ rⁿ-3rⁿ⁻²=0, i.e. r²-3=0
- Solution Find the root of the characteristic equation $r_1 = \sqrt{3}$, $r_2 = -\sqrt{3}$
- Compute the general solution $a_n = \alpha_1(\sqrt{3})^n + \alpha_2(-\sqrt{3})^n$
- Find α_1 and α_2 based on the initial conditions: $a_0 = \alpha_1(\sqrt{3})^0 + \alpha_2(-\sqrt{3})^0 = \alpha_1 + \alpha_2 = 1$ $a_1 = \alpha_1(\sqrt{3})^1 + \alpha_2(-\sqrt{3})^1 = \sqrt{3\alpha_1 - \sqrt{3\alpha_2} = 1}$
- Solution: $a_n = (1/2 + 1/2\sqrt{3})(\sqrt{3})^n + (1/2 1/2\sqrt{3})(-\sqrt{3})^n$

Example - 3

Find an explicit formula for the Fibonacci numbers

- $f_{n-f_{n-1}-f_{n-2}=0}$
- \circ rⁿ-rⁿ⁻¹-rⁿ⁻²=0, i.e. r²-r-1=0
- Find the root of the characteristic equation $r_1 = (1+\sqrt{5})/2$, $r_2 = (1-\sqrt{5})/2$
- Compute the general solution $f_n = \alpha_1(r_1)^n + \alpha_2(r_2)^n$
- Tind α_1 and α_2 based on the initial conditions: $\alpha_1 = 1/\sqrt{5}$

 $\alpha_2 = -1/\sqrt{5}$

Solution: $f_n = 1/\sqrt{5} \cdot ((1+\sqrt{5})/2)^n - 1/\sqrt{5} \cdot ((1-\sqrt{5})/2)^n$

Example - 4

- Find the solution to the recurrence relation $a_n=6a_{n-1}-11a_{n-2}+6a_{n-3}$ with $a_0=2$, $a_1=5$, $a_2=15$
- $a_n 6a_{n-1} + 11a_{n-2} 6a_{n-3} = 0$
- \circ rⁿ-6rⁿ⁻¹+11rⁿ⁻²-6rⁿ⁻³=0, i.e. r³-6r²+11r-6=0
- Find the root of the characteristic equation (r-1)(r-2) (r-3)=0: r₁=1, r₂=2, r₃=3
- Compute the general solution $f_n = \alpha_1(r_1)^n + \alpha_2(r_2)^n + \alpha_3(r_3)^n$
- \oslash Find α_1 , α_2 and α_3 based on the initial conditions
- See solution in textbook

If a root r_1 has multiplicity m_1 then the solution is $a_n = \alpha_1 r_1^n + \alpha_2 n r_1^n + ... + \alpha_{m_1} n^{m_1 - 1} r_1^n + ...$

- Eg. Solve $a_n = 6a_{n-1} 9a_{n-2}$, $a_0 = a_1 = 1$
- $a_n 6a_{n-1} + 9a_{n-2} = 0$
- \circ rⁿ-6rⁿ⁻¹+9rⁿ⁻²=0, i.e. r²-6r+9=0
- Solution Root of the characteristic equation $r_1 = r_2 = 3$
- General solution $a_n = α_1 3^n + α_2 n 3^n$
- Solve for the coefficients:

```
a_0 = \alpha_1 + 0 = 1, so \alpha_1 = 1
```

 $a_1=1(3)^1+\alpha_2(1)(3)^1=1$, so $\alpha_2=-2/3$

```
an=3^{n}-2/3 \cdot n \cdot 3^{n}
```

Reading and Notes

Master the solution procedure for linear homogeneous recurrence relations with constant coefficients

Recommended exercises: 7.2: 1,3,15,21