The Growth of Functions

Jing Yang October 27, 2010

Overview

- How fast does a function grow? How to measure it?
- We quantify the concept that g grows at least as fast as f.
- What really matters in comparing the complexity of algorithms?
 - We only care about the behavior for <u>large</u> problems

Even bad algorithms can be used to solve small problems

Big-O Notation

Assume f:Z \rightarrow R and g: Z \rightarrow R. f(x) is O(g(x)) iff \exists constants C and k such that $\forall x > k |f(x)| \leq C|g(x)|$

- Constants C and k are called witnesses
- The choice of C may depend on the choice of k
- When there is one pair of witnesses, there are infinitely many pairs of witnesses

Big-O Notation

4

Big-O Notation

 \oslash O(g) is a <u>set</u> called a

complexity class

O(g) contains all the functions which g dominates

Big-O notation (example)

 $f(x) = x^2 + 2x + 1$ is $O(x^2)$. Proof: Observe that whenever x>1, $1< x < x^2$ is true. Then it follows that for x>1 $0 \le x^2 + 2x + 1 = |f(x)| \le x^2 + 2x^2 + x^2 = 4|x^2|$ \therefore k=1 and C=4 $\therefore f(x) = O(x^2)$ or $f(x) \in O(x^2)$

Big-O notation (example)

 $f(x) = 7x^2$ is $O(x^3)$.

Proof: Observe that whenever x>1, $x^2 < x^3$ is true. Then it follows that for x>1 $0 \le 7x^2 = |f(x)| \le 7x^3 = 7|x^3|$ \therefore k=1 and C=7 \therefore f(x) = O(x^3) or f(x) $\in O(x^3)$

Big-O notation (example)

Is it true that x^3 is $O(7x^2)$?

Determine whether witnesses exist or not. Assume we can find C and k such that

 $x^{3} \leq C(7x^{2})$ whenever x > k

i.e. x≤7C whenever x>k

No matter what C and k are, the inequality $x \le 7C$ cannot hold for all x with x > k.

So, x^3 is not $O(7x^2)$.

Growth of polynomial functions

The leading term of a polynomial function determines its growth

• Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, where a_n , a_{n-1} , ..., a_1 , a_0 are real numbers. Then f(x) is $O(x^n)$.

See the proof in textbook