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Double Summation
∑4

i=1

∑3

j=1
ij

=
∑4

i=1
(i+ 2i+ 3i)

=
∑4

i=1
6i

= 6 + 12 + 18 + 24 = 60

loop 1:  for i=1 to 4

loop 2:      for j=1 to 3

             S = S + ij
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Cardinality
Recall: A set is finite if its cardinality is some (finite) 
integer n

For two sets A and B

|A| = |B| if and only if there is a bijection from A to 
B

|A| ≤ |B| if there is an injection from A to B

|A| = |B| if |A| ≤ |B| and |B| ≤ |A|

|A| ≤ |B| if A⊆B



Cardinality - 2

Cardinality of infinite sets

Why do we care?

Do all the infinite sets have the same cardinality?

Note: With infinite sets proper subsets can have the 
same cardinality. 

This cannot happen with finite sets.
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Countability - 1

A set is countable if

it is finite or

it has the same cardinality as the set of the 
positive integers Z+, i.e. |A| = |Z+|. The set is 
countably infinite

We write |A| = |Z+| = ℵ0 = aleph null

A set that is not countable is called uncountable
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Countability - 2

Countability implies that there is a listing of the 
elements of the set.

Proving the set is countable involves (usually) 
constructing an explicit bijection with Z+
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Examples

{0,2,5} -- countable

The set of odd integers -- countably infinite
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Show that the set of odd positive integers S is 
countable.

Solution: To show that S is countable, we will show a 
bijective function between Z+ and S.

Consider f: Z+->S be such that f(n) = 2n-1.

To see f is one-to-one, suppose that f(n)=f(m), then 
2n-1=2m-1, so n=m.

To see f is onto, suppose that t∈S, i.e. t=2k-1 for 
some positive integer k. Hence t=f(k).

Q.E.D.
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Obvious fact: Any subset of a countable set is 
countable

Less obvious facts

The rationals are countable （will prove)

The reals are not countable (in the book)

9



Prove that the set of positive rational numbers Q+ is 
countable
Proof: Z+ is a subset of Q+, so |Z+| = ℵ0 ≤ |Q+|.
Now need to show that the positive rational numbers with 
repetitions, QR is countably infinite (*)
Since Q+ ⊆ QR, |Q+| ≤ |QR| = ℵ0. Hence |Q+| = ℵ0

Subproof: show (*)
The position on the path (listing) 
indicates the image of the bijective 
function from Z+ to QR:
f(1)=1/1, f(2)=1/2, f(3)=2/1, f(4)=3/1
Every rational number appears on the 
list at least once, some any times.
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Understand the relationship between Sets, 
Functions, Sequences, and Set Countability

Practice finding the value of sums of 
sequences

Practice determining the countability of a set

Recommended exercises: 2.4: 5,13,19,31,35

Reading and Notes
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