Sequences & Summations (2)

Jing Yang October 25, 2010

Double Summation

 $\sum_{i=1}^{4} \sum_{j=1}^{3} ij$ = $\sum_{i=1}^{4} (i+2i+3i)$ = $\sum_{i=1}^{4} 6i$ = 6+12+18+24=60

loop 1: for i=1 to 4 loop 2: for j=1 to 3 S = S + ij

Cardinality

Recall: A set is finite if its cardinality is some (finite) integer n

For two sets A and B

|A| = |B| if and only if there is a bijection from A to
B

□ $|A| \leq |B|$ if there is an injection from A to B □ |A| = |B| if $|A| \leq |B|$ and $|B| \leq |A|$ □ $|A| \leq |B|$ if $A \subseteq B$

Cardinality - 2

Cardinality of infinite sets □ Why do we care? Do all the infinite sets have the same cardinality? Note: With infinite sets proper subsets can have the same cardinality. \square This cannot happen with finite sets.

Countability – 1

A set is countable if

 \square it is finite or

it has the same cardinality as the set of the positive integers Z⁺, i.e. |A| = |Z⁺|. The set is countably infinite

• We write $|A| = |Z^+| = x_0 = aleph null$

A set that is not countable is called uncountable

Countability – 2

Countability implies that there is a listing of the elements of the set.

Proving the set is countable involves (usually) constructing an explicit bijection with Z⁺

The set of odd integers -- countably infinite

Show that the set of odd positive integers S is countable.

Solution: To show that S is countable, we will show a bijective function between Z^+ and S.

Consider f: Z^+ ->S be such that f(n) = 2n-1.

To see f is one-to-one, suppose that f(n)=f(m), then 2n-1=2m-1, so n=m.

To see f is onto, suppose that $t \in S$, i.e. t=2k-1 for some positive integer k. Hence t=f(k).

Q.E.D.

Obvious fact: Any subset of a countable set is countable

Less obvious facts

The rationals are countable (will prove)
 The reals are not countable (in the book)

Prove that the set of positive rational numbers Q⁺ is countable

Proof: Z⁺ is a subset of Q⁺, so $|Z^+| = \aleph_0 \le |Q^+|$.

Now need to show that the positive rational numbers with repetitions, Q_R is countably infinite (*)

Since $Q^+ \subseteq Q_R$, $|Q^+| \leq |Q_R| = \aleph_0$. Hence $|Q^+| = \aleph_0$

Subproof: show (*)

The position on the path (listing) indicates the image of the bijective function from Z^+ to Q^R :

$$f(1)=1/1$$
, $f(2)=1/2$, $f(3)=2/1$, $f(4)=3/1$

Every rational number appears on the list at least once, some any times.

Reading and Notes

Output Setup Se

Practice finding the value of sums of sequences

Practice determining the countability of a set
Recommended exercises: 2.4: 5,13,19,31,35