Set Operations

Jing Yang October 4, 2010

Review

Sets: definition, representation

 Set membership, subsets, proper subsets, power set, Cartesian product

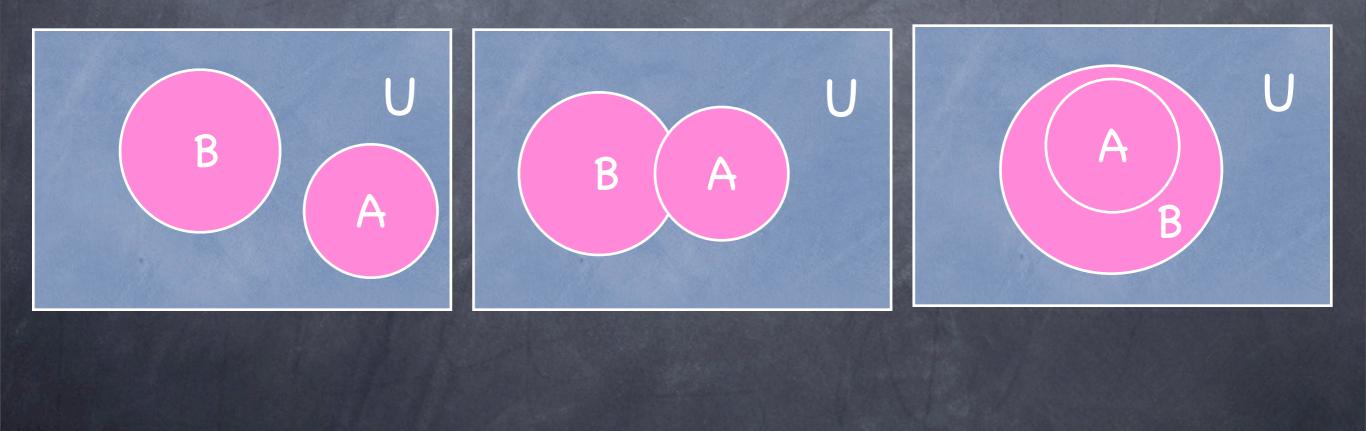
Today: set operations

Set Operations

Oution: A∪B = {x|(x∈A)∨(x∈B)}
Intersection: A∩B = {x|(x∈A)∧(x∈B)}
Disjoint sets: A, B are disjoint iff A∩B=Ø
Difference: A-B = {x|(x∈A)∧(x∉B)}
Complement: A^c or Ā = {x|x∉A} = U-A

Union AUB

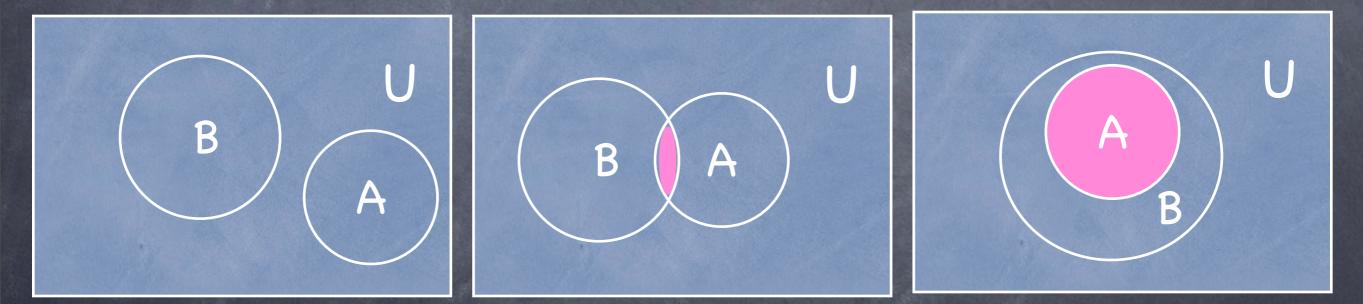
Ourion: A∪B = {x|(x∈A)∨(x∈B)}



4

Intersection AnB

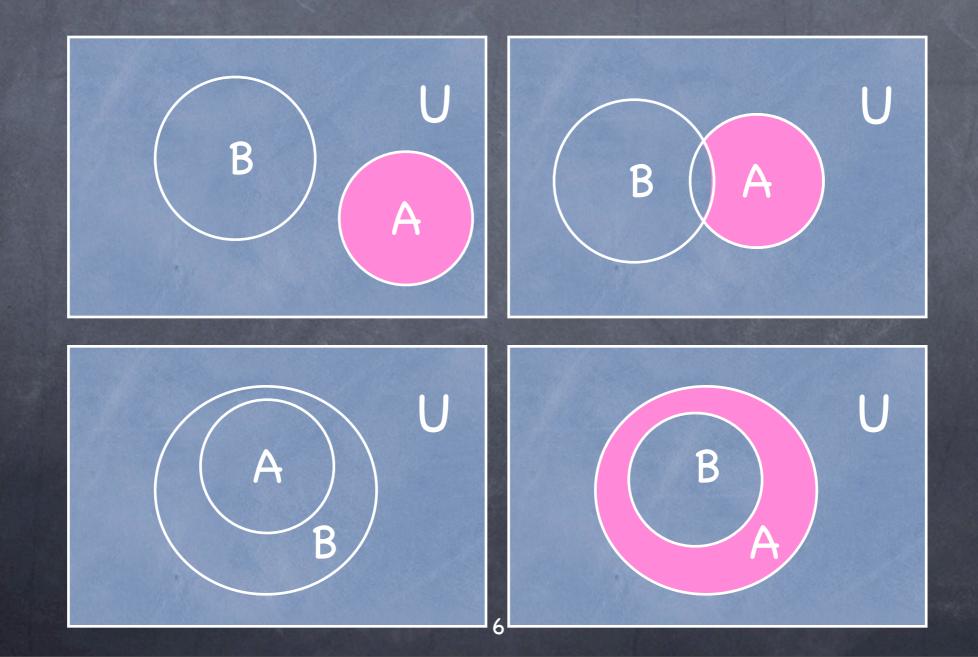
Intersection: A∩B = {x|(x∈A)∧(x∈B)}



Disjoint sets A, B are disjoint iff $A \cap B = \emptyset$

Difference A-B

O Difference: A−B = {x|(x∈A)∧(x∉B)}



Complement A^c or Ā

Ore $\overline{A} = \{x | x \notin A\} = U - A$

Examples

```
For U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\},\
If A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}, then:
\Box A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}
\Box A \cap B = \{4,5\}
\Box A - B = \{1, 2, 3\}
\square B-A = {6,7,8}
\Box \bar{A} = \{6,7,8,9,10\}
```

Set Identities

Set identities correspond to logical equivalences
How to prove the set identities?
Show each set is a subset of the other
Use membership tables

Proof by showing: ∀x(x ∈ A ∪ B ↔ x ∈ A ∩ B)
Let x be arbitrary, then we can treat the predicates as propositions

 $x \in \overline{A \cup B}$ $\equiv x \notin A \cup B$ Def. of complement $\equiv \neg (x \in A \cup B)$ Def. of ∉ $\equiv \neg (x \in A \lor x \in B)$ Def. of U $\equiv \neg(x \in A) \land \neg(x \in B)$ De Morgan's Laws $\equiv x \notin A \land x \notin B$ Def. of ∉ $\equiv x \in \overline{A} \land x \in \overline{B}$ Def. of complement $\equiv x \in \overline{A} \cap \overline{B}$ Def. of n

Since:

 $\square x$ was arbitrary

By using only logically equivalent assertions and definitions we showed $x \in \overline{A \cup B} \leftrightarrow x \in \overline{A \cap B}$

is a tautology So we can claim: $\forall x(x \in \overline{A \cup B} \leftrightarrow x \in \overline{A} \cap \overline{B})$

Proof by using a membership table

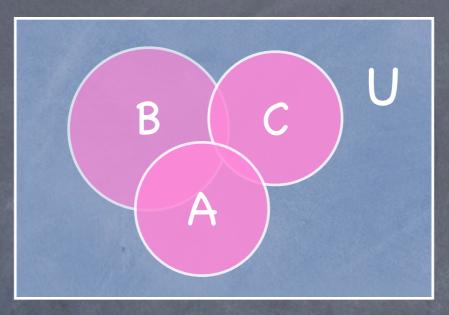
A	В	A∪B	$\overline{A \cup B}$	\overline{A}	\overline{B}	$\overline{A}\cap\overline{B}$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

Set Identities

 Important set identities (Page 124)
 Associative Laws, Distributive Laws, De Morgan's Laws

□ Similarity of the laws in P124 and P24

Generalized Unions

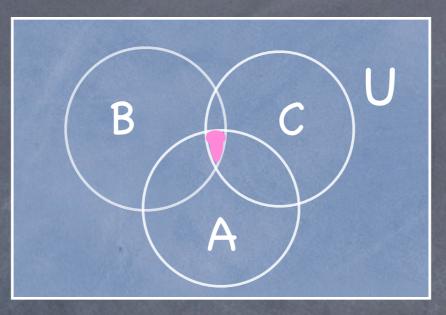


a AuBuC

Sets, we have:
Sets, we have:

 $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$

Generalized Intersections



AnBnC

Let A₁, A₂, ..., A_n be an indexed collection of sets, we have:

 $\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n$

Let A_i={i,i+1,i+2,...}, then:

$$\bigcup_{i=1}^{n} A_i = \{1, 2, 3, ...\}$$

 $\bigcap_{i=1}^{n} A_i = \{n, n+1, n+2, ...\}$

Reading and Notes

Output of the set o

Practice proving set identities

Recommended exercises: 3,5,19,25