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Review

Sets: definition, representation

Set membership, subsets, proper subsets, 
power set, Cartesian product

Today: set operations
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Set Operations

Union: A∪B = {x|(x∈A)∨(x∈B)}

Intersection: A∩B = {x|(x∈A)∧(x∈B)}

Disjoint sets: A, B are disjoint iff A∩B=∅

Difference: A-B = {x|(x∈A)∧(x∉B)}

Complement: AC or Ā = {x|x∉A} = U-A
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Union: A∪B = {x|(x∈A)∨(x∈B)}
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Intersection A∩B
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Intersection: A∩B = {x|(x∈A)∧(x∈B)}

Disjoint sets
A, B are disjoint iff A∩B=∅
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Difference A-B
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Complement Ac or Ā

U
A

Complement: AC or Ā = {x|x∉A} = U-A
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Examples
For U = {0,1,2,3,4,5,6,7,8,9,10},

If A = {1,2,3,4,5}, B = {4,5,6,7,8}, then:

A∪B = {1,2,3,4,5,6,7,8}

A∩B = {4,5}

A-B = {1,2,3}

B-A = {6,7,8}

Ā = {6,7,8,9,10}
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Set Identities

Set identities correspond to logical equivalences

How to prove the set identities?

Show each set is a subset of the other

Use membership tables
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Example:
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A ∪ B = A ∩ B

Proof by showing: 

Let x be arbitrary, then we can treat the 
predicates as propositions

∀x(x ∈ A ∪ B ↔ x ∈ A ∩ B)



Example:
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A ∪ B = A ∩ B

x ∈ A ∪ B
≡ x /∈ A ∪ B
≡ ¬(x ∈ A ∪ B)
≡ ¬(x ∈ A ∨ x ∈ B)
≡ ¬(x ∈ A) ∧ ¬(x ∈ B)
≡ x /∈ A ∧ x /∈ B
≡ x ∈ A ∧ x ∈ B
≡ x ∈ A ∩ B

Def. of complement
Def. of ∉
Def. of ∪
De Morgan’s Laws
Def. of ∉
Def. of complement
Def. of ∩



Example:
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A ∪ B = A ∩ B

Since:
x was arbitrary
By using only logically equivalent assertions 
and definitions we showed 

  
  is a tautology
So we can claim:

∀x(x ∈ A ∪ B ↔ x ∈ A ∩ B)

x ∈ A ∪ B ↔ x ∈ A ∩ B



Example:
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A ∪ B = A ∩ B

Proof by using a membership table

A B A∪B
1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

A ∪ B A B A ∩ B



Set Identities

Important set identities (Page 124)

Associative Laws, Distributive Laws, De 
Morgan’s Laws

Similarity of the laws in P124 and P24
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Generalized Unions 

A∪B∪C

Let A1, A2, ..., An be an indexed collection of 
sets, we have:
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n⋃

i=1

Ai = A1 ∪ A2 ∪ ... ∪ An

UCB
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Generalized Intersections 

A∩B∩C

Let A1, A2, ..., An be an indexed collection of 
sets, we have:
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Ai = A1 ∩ A2 ∩ ... ∩ An



Example

Let Ai={i,i+1,i+2,...}, then:
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n⋂

i=1

Ai = {n, n + 1, n + 2, ...}

n⋃

i=1

Ai = {1, 2, 3, ...}



Reading and Notes

Understand the relationship between set 
operations and logic operations

Practice proving set identities

Recommended exercises: 3,5,19,25
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