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Review

What is covered in this course?

Basic tools and techniques 

Precise and rigorous mathematical reasoning

Why are proofs necessary?

What is a (valid) proof in Mathematics?

What details do you include or skip?
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What is a proof?

In Math, a proof is a step-by-step demonstration 
that a conclusion follows from some hypotheses.

In a each step use hypotheses, axioms, previously 
proven theorems, rules of inference, and logical 
equivalences such that the intermediate 
conclusion follows from previous step
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Terminology

Theorem: A statement that can be proved to be true

Axiom: A statement which is given to be true

Lemma: A ‘pre-theorem’ that is needed to prove a 
theorem

Corollary: A ‘post-theorem’ that follows from a 
theorem

4



Rules of Inference

In order to infer new facts using facts we 
already have

Rules of Inference are important in proofs, 
although they are sometimes used without 
being mentioned
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Rules of Inference
Recall the tautologies in previous sections of the 
chapter, which have the form:

H1 ∧ H2 ∧...∧ Hn → C
Hi :Hypotheses Conclusion
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∴ means 
‘therefore’ or 
‘it follows that’

As a rule of inference they take the symbolic form:
H1

H2

...
Hn

∴C



Modus Ponens
(Law of Detachment)
From p→q and p is TRUE, we can infer that q 
is TRUE.

p→q
p
∴q

((p→q)∧p)→q
Tautology
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Universal Instantiation

From ∀xP(x) is true we can infer that P(c) is 
true, where c is a particular member of the 
domain

8

∀xP(x)
∴P(c)



Universal Generalization

From P(c) is true for an arbitrary c in the 
domain, we can infer that ∀xP(x) is true.
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P(c) for an arbitrary c
∴∀xP(x)



More Rules of Inference

Read rules on page 66 and 70.

Understanding is required, memorization is 
not.
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Types of Proofs

Direct proof (including proof by cases)

Proof by contraposition

Proof by contradiction

Proof by construction

Proof by induction

Other techniques

⎬
⎫

⎭
Indirect proof
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Direct Proof
Leads from hypothesis to the conclusion

How to prove p→q?

Assume p is true

q must be true

Q.E.D. (used to signal the end of a proof)

}
These steps are constructed using:
• Rules of inference
• Axioms
• Lemmas
• Definitions
• Proven theorems
• ...
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Direct Proof (example)
If n is an odd integer, then n2 is odd.

Proof:

Assume n is an odd integer

By definition, n=2k+1 for some integer k

n2 = (2k+1)2 = 4k2+4k+1 = 2(2k2+2k)+1

Let m = 2k2+2k, n2 = 2m+1

By definition, n2 is odd

Q.E.D.

Definition: 
n is an odd integer if
n=2k+1 for some integer 
k
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Proof by Contraposition

Leads from the negation of conclusion to the 
negation of hypothesis 

How to prove p→q?

Assume ¬q is true

¬p must be true

Q.E.D.

} These steps are constructed using:
• Rules of inference
• Axioms
• Lemmas
• Definitions
• Proven theorems
• ...

p→q ≡ ¬q→¬p
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Proof by Contraposition 
(example) 

If n2 is an even integer, then n is even.

Proof (by contraposition):

Assume n is an odd integer. Then n=2k+1 (k is integer)

n2 = (2k+1)2 = 4k2+4k+1 = 2(2k2+2k)+1

Let integer m = (2k2+2k), then n2=2m+1.

So n2 is odd.

Q.E.D.
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Proof by Contradiction

Leads from the hypothesis and the negation 
of conclusion to a contradiction

How to prove p→q?

Assume p and ¬q is true

Contradiction!

Q.E.D.

} These steps are constructed using:
• Rules of inference
• Axioms
• Lemmas
• Definitions
• Proven theorems
• ...
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p→q ≡ p∧¬q→FALSE



Proof by Contradiction
(example)

√2 is irrational.

Proof (by contradiction):

Assume √2 is rational. Then √2=a/b such that a and b 
have no common factors (definition)

Squaring and transposing: 2=a2/b2, a2=2b2.

a2 is even, so a is even (previous slide). i.e. ∃k a=2k

a2 = 4k2 = 2b2, so b2 = 2k2 

b2 is even, so b is even (previous slide). i.e. ∃m b=2m

a and b have common factor 2 -- Contradiction!
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Reading and Notes

Skim Sec 1.5, read Sec 1.6

Master the basic proof methods: direct 
proof, proof by contraposition, proof by 
contradiction

Recommended exercises: 1.5: 3,15,19,23; 1.6: 
1,11,17
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