Nested Quantifiers

Jing Yang September 20, 2010

Review

Propositions, Logical operators -- basic
 Predicates, Quantifiers -- more powerful

Nested Quantifiers

- One quantifier can be placed within the scope of the other
- Allows simultaneous quantification of many variables

 $\forall x \exists y(x+y=0)$ $\forall x Q(x)$ $\forall x Q(x)$ $Q(x): \exists y P(x,y)$ $Q(x): \exists y P(x,y)$ P(x,y): x+y=0

Nested Quantifiers (example)

- Show $\forall x \exists y(x+y=0)$ is true over the integers
 - Assume an arbitrary integer x
 - To show that there exists a y that satisfies the requirement of the predicate, choose y = -x.
 Clearly y is an integer, i.e. in the domain.

$$-$$
 So x + y = x + (-x) = 0.

- Since we assumed nothing about x (other than it is an integer), the argument holds for any integer x.
- Therefore, the predicate is TRUE.

Order of Nested Quantifiers

When there are only one kind of quantifiers (universal or existential) in a statement, then the change of order does not change the meaning of the statement:

 $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$

Order of Nested Quantifiers -2

When there are different quantifiers, order matters

Consider the two propositions over the integer domain:

∀x∃y(x<y) v.s ∃y∀x(x<y)

□ ∀x∃y(x<y): "there is no maximum integer"
 □ ∃y∀x(x<y): "there is a maximum integer"
 > Not the same meaning at all!!

Quantifications of Two Variables

Statement	When true?	When false?
∀x∀yP(x,y) ∀y∀xP(x,y)	P(x,y) is true for every pair (x,y)	A pair (x,y) exists for which P(x,y) is false
∀x∃yP(x,y)	For every x, there is a y for which P(x,y) is true	There is an x such that P (x,y) is false for every y
∃x∀y₽(x,y)	There is an x for which P (x,y) is true for every y	For every x, there is a y for which P(x,y) is false
∃x∃yP(x,y) ∃y∃xP(x,y)	There is a pair (x,y) for which P(x,y) is true	P(x,y) is false for all pairs (x,y)

Examples

What is the truth value of the following:

- ∃x∀y(x+y=0) domain: integers
- ∃x∀y(xy=0) domain: integers
- ∀x≠0∃y(y=1/x) domain: real numbers
- ∀x∀y∃z(z=(x+y)/2) domain: integers

Negation of Nested Quantifiers

Review: Negation of quantification $\Box \neg \forall x P(x) \equiv \exists x \neg P(x)$ $\Box \neg \exists x P(x) \equiv \forall x \neg P(x)$

Negation of Nested Quantifiers

Same rules as before Ex 1: $\neg \forall x \exists y(x < y)$ $\equiv \exists x \neg \exists y(x < y)$ $\equiv \exists x \forall y \neg (x < y)$ $\equiv \exists x \forall y (x \geq y)$ Ex 2: ¬∃x∀y(x+y=0) $\equiv \forall x \neg \forall y(x+y=0)$ $\equiv \forall x \exists y \neg (x + y = 0)$ $= \forall x \exists y (x + y \neq 0)$

English -> Logical Expression

The sum of two positive integers is always positive."

Rewrite in English using quantifiers and domain:
 "For every pair of integers, if both integers are positive, then the sum of them is positive."

Introduce variables

"For integers x and y, if x and y are positive, then x +y is positive."

- $\forall x \forall y((x>0) \land (y>0) \rightarrow (x+y>0))$ domain: integers

English -> Logical Expression (2)

- No one has more than one best friend."
- Determine individual propositional function BF(x,y): y is the best friend of x
- Rewrite in English using variables, BF, and quantifiers:

"There does not exist one x, for whom there is a person y and a person z other than y such that BF (x,y) and BF(x,z) are both true."

- ¬∃x∃y∃z(BF(x,y)∧BF(x,z)∧(z≠y)) domain: all people

English -> Logical Expression (3)

Transform the logical expression to a logical 0 equivalent one $\neg \exists x \exists y \exists z (BF(x,y) \land BF(x,z) \land (z \neq y)) domain: all people$ Negation of quantifiers $= \forall x \neg \exists y \exists z (BF(x,y) \land BF(x,z) \land (z \neq y))$ $= \forall x \forall y \neg \exists z (BF(x,y) \land BF(x,z) \land (z \neq y))$ $= \forall x \forall y \forall z \neg (BF(x,y) \land BF(x,z) \land (z \neq y))$ De Morgan's Laws $= \forall x \forall y \forall z (\neg BF(x,y) \lor \neg BF(x,z) \lor \neg (z \neq y))$ $= \forall x \forall y \forall z (\neg BF(x,y) \lor \neg BF(x,z) \lor (z=y))$

Logical Expression -> English

∀x(hasComputer(x)∨∃y(hasComputer(y)∧friends(x,y)))

Domain of x and y: all students

 "For every student x, x has a computer or there is a student y such that y has a computer and x and y are friends"

 "Every student has a computer or has a friend who has a computer"

Logical Expression -> English (2)

Domain of x, y and z: all students

- "There is a student x such that for all students y and all students z, if x and y are friends, x and z are friend and z and y are not the same student, then y and z are not friend."

 "There is a student none of whose friends are also friends with each other."

Readings and Notes

Read Sec 1.4

Output of the order and scope of the quantification

Practice translating between English and logical expressions

Practice proving/showing the truth value of a logical expression

Recommended exercises: 1,3,9,12,21,25,27,39