Predicates and Quantifiers

Jing Yang September 17 2010

Overview

Review: Propositions, Logical operators, Logical equivalence

Limitations of propositional logic:
 Refer to (constant) objects
 Also need to say:

objects have certain properties
objects relate to one another in certain ways
Predicate Logic is more powerful

A predicate is a proposition that is a function of one or more variables.

(x)> 3 Variable

Predicate: Property the variable can have P(x) Name of the Variable
predicate

Predicate - 2

A predicate is a proposition that is a function of one or more variables.

x>y Variable

Predicate: Relationship of the two variables P(x,y) Name of the Variables predicate

Predicate (Example) - 1

Positive(x): x>0

What are the truth values of P(4) and P(-2)?

Solution:

□ x=4

P(4): 4>0 -----True

□ x=-2

P(2): -2>0 -----False

Predicate (Example) - 5

Greater(x,y): x>y

What are the truth values of Greater(4,1) and Greater (2,2)?

Solution:

□ x=4,y=1

Greater(4,1): 4>1 -----True

□ x=2,y=2

Greater(2,2): 2>2 -----False

Quantifier

By describing the range of the variable (AKA. binding) it becomes possible to determine the truth value of the predicate

Two popular quantifiers

□ Universal: ∀×P(×) - "P(×) is true for <u>all</u> × in the <u>domain</u>"

□ Existential: ∃xP(x) - "P(x) is true for <u>some</u> x in the <u>domain</u>"

Universal Quantifier

Ø Universal quantifier ∀:

For all...; For every...; For each...; All of...; For arbitrary...

✓ Using universal quantifier (domain: real numbers)
 □ ∀x(x²≤0)
 □ (∀x>1)(x²>x) - quantifier with restricted domain

Universal Quantifier -2

 $\forall x P(x):$

□ When true?

P(x) is true for every x in the domain

When false?

P(x) is not always true when x is in the domain (find <u>a</u> <u>value of x</u> that P(x) is false)

Counterexample

Universal Quantifier Examples

Domain: real numbers

 $\Box \quad \underline{P(x): \ x^2 \ge 0} \quad \text{Is } \forall x P(x) \text{ true?}$

- $x^2 \ge 0$ is true for all real numbers, so $\forall x P(x)$ is true

 $\Box \quad \underline{Q(x): x^2 > x} \quad \text{Is } \forall x Q(x) \text{ true?}$

 Find a counterexample: when x=0, Q(0): 0²>0 is false, so ∀xP(x) is false

Existential Quantifier

Ø Existential quantifier ∃:

There exists...; There is...; For some...; For at least one...

✓ Using existential quantifier (domain: real numbers)
 □ ∃x(x>1)
 □ ∃x(x=x+1)

Existential Quantifier -2

□ When true?

There is an x in the domain for which P(x) is true (find a value of x that P(x) is true)

□ When false?

P(x) is false for every x in the domain

Existential Quantifier Examples

Domain: real numbers

 $\Box \quad \underline{P(x): x>1} \quad \text{Is } \exists xP(x) \text{ true?}$

- Find an x such that P(x) is true: when x=100, P(x): 100>1 is true, so $\exists x P(x)$ is true

 \square <u>Q(x): x=x+1</u> Is $\exists xQ(x)$ true?

-Q(x) is false for all real numbers, so $\exists xP(x)$ is false

A tricky example

"Every CS student is smart"

 $\oslash \forall x (CSStudent(x) \rightarrow Smart(x))$

Some CS student is smart"

What is the difference of the following?

 $\forall x (CSStudent(x) \land Smart(x))$

Why it cannot represent "Every CS student is smart"?

Scope of Quantifiers

Ø,∃ have higher precedence than operators from
 Propositional Logic

 \square E.g. $\exists x P(x) \lor Q(x)$ is not logically equivalent to $\exists x(P(x) \lor Q(x))$

Operators	Precedence
ΕV	0
7	1
\wedge	2
V	3
\rightarrow	4
\leftrightarrow	5

Logical Equivalence

Logically equivalent?

∀x(P(x)∧Q(x))	Yes	∀xP(x)∧∀xQ(x)
∀x(P(x)∨Q(x))	No	∀xP(x)∨∀xQ(x)
∃x(P(x)∧Q(x))	No	∃xP(x)∧∃xQ(x)
∃x(P(x)∨Q(x))	Yes	∃xP(x)∨∃xQ(x)

Negation of Quantifiers

- De Morgan's Laws
 - $\Box \neg \forall x P(x) \equiv \exists x \neg P(x)$
 - $\Box \neg \exists x P(x) \equiv \forall x \neg P(x)$
- Careful: The negation of "Every professor is good" is NOT "No professor is good"!!

Readings and Notes

- Read Section 1.3
- Understand the difference and relationship between propositions, predicates(functional propositions), and predicates with quantifications
- Practice translating English using predicate logic
- Recommended exercises: 13,21,23,25,33,39