Propositional Logic (cont.) & Propositional Equivalences (skim)

Jing Yang September 15 2010

Review

Proposition and truth values
Boolean logic: ∧,∨,¬,⊕
Truth tables

Conditional

- p: hypothesis, q: conclusion

Ρ	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Conditional – 2

$$p \rightarrow q = \neg p \lor q$$

Р	q	٦P	p→q	¬p∨q
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

4

Conditional – 3

 \odot Conditional: $p \rightarrow q$

If you are a CS student, then you take CSE1019.

Contrapositive of $p \rightarrow q: \neg q \rightarrow \neg p$

If you do not take CSE1019, then you are not a CS student.

 \odot Converse of $p \rightarrow q: q \rightarrow p$

If you take CSE1019, then you are a CS student.

Inverse of p → q: ¬p → ¬q

If you are not a CS student, then you do not take CSE1019.

Conditional – 4 Logical Equivalence

		Conditional	Contrapositive	Converse	Inverse
Р	q	p→q	¬q→¬p	q→p	¬p→¬q
Т	Т	Τ	Т	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	F	F
F	F	Т	Т	Т	Т

Biconditional

- Biconditional: $p \leftrightarrow q$ ("p if and only if q")
- ø p↔q is true if and only if p and q have same truth values

Ρ	q	p↔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical operators (review)

8

Negation $\neg p$ "not p" Conjunction $p \land q$ "p and q" Disjunction $p \lor q$ "p or q or both" Exclusive or
 $p \oplus q$ "p or q, but not both" Conditional statement $p \rightarrow q$ "if p then q" Biconditional statement $p \leftrightarrow q$ "p if and only if q"

Compound Propositions

Orecedence order: ¬,∧,∨,→,↔ (Overruled by parenthesis)

р	q	p→q	٦P	¬p∨q	(p→q)↔(¬p∨q)
Т	Т	Т	F	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Tautology

A compound proposition that is always TRUE.
Examples:
pvT
pv-p

> (p→q)↔(¬p∨q)

Propositional Equivalence

> P Not a logical operator!!!

 $> \Leftrightarrow$ is sometimes used instead of =

- > Truth tables are the simplest way to prove such facts
- > We will learn other ways later

Manipulating Propositions

- Compound propositions can be simplified by using simple rules.
- Read page 24-25
- Some are obvious: Identity, Domination, Idempotent, double negation, commutativity, associativity, negation
- Less obvious: distributive, De Morgan's laws, Absorption

Distributive Laws

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Intuition (not a proof!) – For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.

 $p \lor (q \land r) = (p \lor q) \land (p \lor r)$

Intuition (less obvious) – For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

De Morgan's Laws

 $\neg(p \lor q) \equiv \neg p \land \neg q$

Intuition – For the LHS to be true: neither p nor q can be true. This is the same as saying p and q must be false.

 $\neg(p \land q) \equiv \neg p \lor \neg q$

Intuition – For the LHS to be true: $p \land q$ must be false. This is the same as saying p or q must be false.

Proof: use truth tables.

De Morgan's Laws - 2

$$\neg (p_1 \lor p_{2...} \lor p_n) \equiv \neg p_1 \land \neg p_{2...} \land \neg p_n$$

$$\neg (p_1 \land p_2 \ldots \land p_n) \equiv \neg p_1 \lor \neg p_2 \ldots \lor \neg p_n$$

Example

Is $p \lor (\neg(p \land q))$ a tautology? Solution: $p \lor (\neg (p \land q)) \equiv$ $p \vee (\neg p \vee \neg q) \equiv$ $(p \lor \neg p) \lor \neg q \equiv$ T ∨¬q

T

Readings and notes

Read Section 1.1 and 1.2

Master the rationale behind the definition of conditionals

Practice proving logical equivalence by manipulating compound propositions

Recommended exercises: 1.1:5,9,19,23,27,44,49,55-59; 1.2:1,3,4,5,7