MATH/CSE1019 A Discrete Mathematics for Computer Science

Instructor: Jing Yang September 13 2010

Questions for Today

- What is Discrete Mathematics?
- Why study it?
- How will the course be run?
- How to succeed in this course?

What?

Discrete:

Separate, distinct;

The opposite of continuous.

Discrete Mathematics:

Abstract mathematical models dealing with discrete objects and the relationship between them

What?

- Basic tools and techniques related to computer science
 - > Formal logic
 - Discrete structures sets, functions, sequences, sums
 - > Simple algorithms
 - > Induction and recursion
 - > Counting
- Precise and rigorous mathematical reasoning
 - > Writing proofs

Why?

Need for CS

Need for other fields

Discrete Mathematics

Need for life

- Course website: www.cse.yorku.ca/course/1019A
- Office hours: MWF 11:00-noon
- Office: CSEB 2018
- Email: jyang@cse.yorku.ca

Use a York account

Start your subject line with "[1019]"

Sign with your full name

Send messages in plain text

Tutorial: TBD

Grading

Assignments	20%		
Test 1	10%	Oct 8	
Test 2	15%	Nov 5	
Drop Deadline		Nov 12	
Test 3	15%	Dec 3	
Final exam	40%	Dec 12 - 23	

Assignments

- ACADEMIC HONESTY!
- Out on Mondays and due next Monday
- Solutions will be posted on Wednesdays
- Not accepted after solutions posted
- 3 free "late days"

Course Materials

- Textbook: Kenneth H. Rosen. Discrete Mathematics and Its Applications, Sixth Edition. McGraw-Hill, 2007.
- Slides: To be posted on course website

How to Succeed

- Come to class
- Practice, practice and practice!!
- Stay on schedule
- Ask questions (office hours, tutorials)

Overview of Propositional Logic

- A formal mathematical "language" for precise reasoning
 - Declarative propositions
 - \square Boolean operations: $\land, \lor, \neg, \rightarrow, \leftrightarrow$
 - □ Truth values, truth tables
- All of these are base on ideas we use daily to reason about things

Proposition

Definition:

- Declarative sentence
- Either true or false, but not both

Examples:

2 + 1 = 3	True proposition	
Toronto is the capital of Canada	False proposition	
Read this carefully	Not declarative	
x + 1 = 2	Neither true or false	

Proposition

Propositions can be represented by variables: p,q...

p: Today is Monday.

q: Today is Tuesday.

Truth value: True or False (T or F)

p: True

q: False

Negation

- ¬p ("not p")
- ¬p is true if and only if p is false

р	¬p
T	F
F	Т

Conjunction

- \circ Conjunction: $p \land q$ ("p and q")
- p \(\) q is true if and only if both p and q are true

р	q	p∧q
Т	Т	Т
T	F	F
F	T	F
F	F	F

Disjunction

- Disjunction: p v q ("p or q")
- p v q is true if and only if p is true, q is true or both p and q are true

P	q	p∨q
Т	Т	Т
T	F	T
F	T	T
F	F	F

Exclusive OR (XOR)

- Exclusive OR: p

 q ("p or q, but not both")
- p e q is true if and only if p and q have different truth values

P	q	p⊕q
Т	Т	F
T	F	T
F	T	T
F	F	F

Truth Table

Р	q	p∧q	pvq	p⊕q
Т	T	Т	Т	F
Т	F	F	T	T
F	T	F	Т	Т
F	F	F	F	F

In the truth table, we are not concerned with what p and q mean in some world -- they stand for two independent propositions that can be true or false.

Readings and notes

- Read Section 1.1
- Practice translating between English sentences and propositional logic statements
- Think about the notion of truth tables
- Recommended exercises: 1.1:1,3