
Motivation

Visual Tracking using a Pixelwise Spatiotemporal

INTRODUCTION

Kevin Cannons
Supervisor: Richard P. Wildes

{kcannons, wildes}@cse.yorku.ca
Department of Computer Science and Engineering, York University

Input: Video Frames Features: Spatiotemporal
Oriented Energies

Output: Tracked
Target

Interframe
Motion

Estimation

145 260 400 665

300 445 580 1009

16 59 85 355

230 727 1090 1467

6 1313 3434 57

260 421 621 721

241 581 621 891

17 217 338 355

315 725 925 1101

5 1515 3434 55

x

y

t

Spatiotemporal volume rep-
resentation of video

x

y

Single frame of a video sequence
where a red bar is moving to the right
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TECHNICAL APPROACH

Spatiotemporal Oriented Energies

Overview

Events in a video sequence generate diverse structures in the
spatiotemporal domain.

(i) A novel oriented energy representation that retains the spa-
tial organization of the target is developed for visual tracking.
These features have never been deployed in a pixelwise fash-
ion to form the fundamental features for tracking.

(ii) A method is derived for instantiating this representation
within a parametric flow estimation tracking algorithm.

(iii) The discriminative power of the pixelwise oriented energy
representation is demonstrated via a direct comparison against
other commonly-used features.

(iv) The overall tracking implementation is demonstrated to per-
form as well or better than several state-of-the-art algorithms
during extensive qualitative and quantitative comparisons.

In the figure above, the rightward motion appears as a diago-
nal structure extending from the front left to the back right of
the cube in the spatiotemporal domain. Structures of arbitrary
orientation can be generated in the spacetime domain by the
various static structures and motions that can occur in a video.

One method of capturing the spatiotemporal characteristics of
a video sequence is through the use of oriented energies [1, 2].  
These energies are derived using the filter responses of orien-
tation selective bandpass filters when they are convolved with
a spatiotemporal volume.

The desired oriented energies are realized using broadly tuned
3D Gaussian second derivative filters, , and their corre-
sponding Hilbert transforms, , where specifies the 3D
direction of the filter axis of symmetry, and indicates the
scale within a Gaussian pyramid formulation [3]. Hence, an ini-
tial measure of local energy can be computed according to

To obtain a purer measure of the relative contribution of orien-
tations, irrespective of image contrast, pixelwise normalization
is performed,

Robust Motion Estimation

The optical flow constraint equation [4] is used to formulate a
measure of match between feature measurements (oriented
energies) that are aligned by a parametric motion model

The affine parameters, , are estimated by minimizing the error
in the optical flow constraint equation, summed over the target
support. Significantly, in the present approach the target repre-
sentation spans multiple feature channels (orientations and
scales) of spatiotemporal oriented energies, leading to

EMPIRICAL EVALUATION
Feature Set Comparison

Comparison Against Strong Trackers
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SUMMARY
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There are several direct applications of “following a target”
(e.g., surveillance, active camera systems).

Many computer vision problems are beginning to rely on
visual trackers as an initial stage of processing (e.g., activity
recognition, object recognition).

Key challenges for visual trackers include: illumination
effects, scene clutter, and sudden changes in target appear-
ance or velocity.

It is proposed that the choice of representation is key to
meeting the above challenges.

GOAL: To identify a rich, pixelwise representation of a target
that models both its spatial and dynamic properties in a uni-
form fashion and can be instantiated effectively in a tracker.

(left) Frames from a video sequence where a book is being tracked.
(middle) Application of spacetime oriented energy filters decomposes
the input video into a series of video channels that capture spatiotem-
poral orientation. From top-to-bottom the three energy channels for
each frame correspond roughly to horizontal static structure, rightward
motion, and leftward motion.
(right) Interframe motion is computed using the oriented energy
decomposition.

where is a constant introduced to avoid instabilities when the
overall energy content is small.

For this work, energies were computed at 10 orientations, as
they span the space of 3D orientations for the highest order fil-
ters that were used (i.e., ). Energies were computed at a sin-
gle scale, corresponding to direct application of the oriented fil-
ters to the input imagery.

Tracking using a pixelwise template approach consists of
matching the template to the current frame to estimate the
interframe motion of the target. Here, both the template and the
image frame are represented in terms of oriented energies.

where is the Geman-McClure error metric with width .

where are the first-order spatial derivatives of the
image energy measurements for a specific scale and orienta-
tion, is the flow vector, and are the
six affine motion parameters for the local region.

This experiment provides a direct comparison between the pro-
posed spatiotemporal oriented energy features and two alterna-
tives. Three tracking systems were considered, the single dif-
ference between them being the feature set. The first tracker,
SOE, used the proposed spatiotemporal oriented energy fea-
tures (10 spacetime orientations) while the second tracker, INT,
simply employed pixelwise raw image intensities. The third
tracker, OE, utilized a purely spatial oriented energy feature
representation. For OE, the energies were computed at four
spatial orientations within the image plane.

Qualitative Results

Feature comparisons. Frame numbers are shown in the top left corner
of each image. Top-to-bottom by row, shown are Occluded Face 2,
Sylvester, Tiger 2, Ming, and Pop Machines videos. Orange, purple,
and green boxes are for SOE, OE, and INT trackers, resp.

Quantitative Results

Each plot shows the error (in pixel Euclidean distance) between the
ground truth center of mass and the center of mass when each feature
representation was used for tracking. Row 1, left-to-right, results for
Occluded Face 2, Sylvester, Tiger 2, and Ming. Row 2, left-to-right, Pop
Machines target 1 (starting on right) and target 2 (starting on left).

Summary of quantitative results for feature set experiment. Values listed
are pixel distance errors for the center of mass points averaged over all
frames. Green and red show best and second best performance, resp.

This experiment compares the performance of the proposed
overall spatiotemporal oriented energy tracker, SOE, against
several strong trackers. The specific trackers considered are
the multiple instance learning tracker (MIL) [5], the incremental
visual tracker (IVT) [6], and a tracker that uses a similar orient-
ed energy representation, but that is spatially collapsed across
target support to fit within the mean shift framework (MS) [7].

Qualitative Results

Quantitative Results

Each plot shows the error (in pixel Euclidean distance) between the
ground truth center of mass and the center of mass provided by each
tracker. Left-to-right, as in previous quantitative results figure.

Summary of quantitative results for strong tracker experiment. Values list-
ed are pixel distance errors for the center of mass points averaged over
all frames. Green and red show best and second best performance, resp.

Comparison against alternative trackers. Top-to-bottom as in previous
qualitative results figure. Orange, green, purple, and teal boxes show
results for proposed SOE, IVT, MIL, and MS trackers, resp.

where are spatiotemporal image coordinates,
is an image, and denotes the convolution operator.

Oriented Energy Representation

(i) A novel representation in terms of pixelwise spatiotemporal
oriented energies was derived for the problem of tracking.

(ii) The representation was shown to outperform other com-
monly-used features and the resulting tracker provided superi-
or performance relative to several state-of-the-art trackers.

(iii) Superior performance was attained because of the rich-
ness of the representation (uniformly capturing spatial and
temporal characteristics) and its robustness to illumination.
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