

 $M_{(n,k)}$ associated number of paths, associated attenuation through path i, $A_{(n,k,i)}$ $au_{(n,k,i)}$ associated delay through path *i*, and; $v_{(n,k)}(t)$ associated observation noise.

CRAMÉR-RAO BOUND FOR TIME REVERSAL ACTIVE ARRAY DIRECTION OF ARRIVAL ESTIMATORS IN MULTIPATH ENVIRONMENTS

Signal Processing and Communications Laboratory Computer Science and Engineering, York University, Toronto, Canada

(1)

$$R_{(n,k)}(\omega) = \sum_{i=1}^{M_{(n,k)}} A_{(n,k,i)} e^{-j\omega\tau_{(n,k,i)}} F(\omega) +$$

Define the multipath response matrix as

$$\forall k, n = 1, \cdots, P \quad \mathbf{H}(\omega) \stackrel{\Delta}{=} \{ H(\omega; A_n \leftarrow$$

where its (n, k) constituent element is given by

$$H_{nk}(\omega; A_n \leftarrow A_k) = \sum_{i=1}^{M_{(n,k)}} A_{(n,k,i)} e^{-j\omega^2}$$

Then, Eq. (2) is expressed in the matrix-vector form as

$$\mathbf{r}_k(\omega) = \mathbf{H}(\omega)\mathbf{e}_k F(\omega) + \mathbf{v}(\omega),$$

TR Probing: Following the principle of TR, the recorded malized, time reversed, and retransmitted back into t tered TR signal at Array A is

> $\mathbf{p}_k(\omega) = c\mathbf{H}(\omega)\mathbf{r}_k^*(\omega) + \boldsymbol{\zeta}(\omega)$ $= c\mathbf{H}(\omega)[\mathbf{H}^*(\omega)\mathbf{e}_k F^*(\omega) + \mathbf{v}^*(\omega)]$

where constant c represents the signal gain used durin step prior to time reversal. Eq. (6) is expressed as

 $\mathbf{p}_k(\omega) = c\mathbf{T}(\omega)\mathbf{e}_k F^*(\omega) + \mathbf{w}(\omega)$

where $T(\omega) = H(\omega)H^*(\omega)$ is the so called TR matrix.

CRLB: Single passive targe

CRLB Expressions

Theorem 1. Expressed in terms of the location parame of arrival of the target based on the forward observation vec

$$CRB_{CV}(\vec{\alpha})^{-1} = \frac{N}{2\pi\sigma_v^2} \int |F(\omega)|^2 \mathbf{D}^H \mathbf{I}$$

where the $(P \times 2)$ derivative matrix $\mathbf{D} = \left| \frac{\partial \mathbf{h}_k}{\partial R_t} \frac{\partial \mathbf{h}_k}{\partial Y_t} \right|$, and the vector $\mathbf{h}_k = \mathbf{H}(\omega) \mathbf{e}_k$ is the channel response vector in the forward probing stage.

Theorem 2. Expressed in terms of the location parameters, the CRB of the DOA of the target based on the TR observation vector $\mathbf{p}_k(\omega)$ (Eq. (7)) is given by

$$CRB_{TR}(\vec{\alpha})^{-1} = \frac{Nc^2}{2\pi\sigma_w^2} \int |F(\omega)|^2 \mathbf{E}^H \mathbf{I}$$

where the $(P \times 2)$ derivative matrix $\mathbf{E} = \begin{bmatrix} \frac{\partial \mathbf{t}_k}{\partial R_t} \frac{\partial \mathbf{t}_k}{\partial Y_t} \end{bmatrix}$ and vector $\mathbf{t}_k = \mathbf{T}(\omega)\mathbf{e}_k$ is the k'th column of the TR matrix $\mathbf{T}(\omega) = \mathbf{H}(\omega)\mathbf{H}^*(\omega)$.

Analytical Interpretation of the CRBs

Considering Eq. (4), the component $H_{ik}(\omega) = \mathbf{a}_{ik}^T \epsilon_{ik}$, where the attenuation coefficients and delays are grouped in vectors

$$\mathbf{a}_{ik} \stackrel{\Delta}{=} [A_{(k,i,1)}, \cdots, A_{(k,i,M_{ik})}]^T \text{ and } \epsilon_{ik} \stackrel{\Delta}{=} [e^{-j\omega\tau_{(k,i,1)}}]^T$$

such that $H_{ik}(\omega) = \rho_{ik} e^{j\delta_{ik}}$.

[†]This work was supported in part by the Natural Science and Engineering Research Council (NSERC), Canada under Grant No. 228415-2010.

Foroohar Foroozan and Amir Asif

$V_{(n,k)}(\omega).$ (2) $-A_{k})\},$ (3) $V^{(n,k,i)}.$ (4) (5) d signal $\mathbf{r}_{k}(\omega)$ is energy nor- the medium. The backscat- (6) $\omega)] + \zeta(\omega)$ (6) $\omega)] + \zeta(\omega)$ Ing the energy normalization (), (7) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by	$V_{(n,k)}(\omega).$ (2) $(-A_k)\},$ (3) $V_{(n,k,i)}.$ (4) (5) d signal $\mathbf{r}_k(\omega)$ is energy nor- he medium. The backscat- (6) $\omega)] + \zeta(\omega)$ (6) $\omega)] + \zeta(\omega)$ Ing the energy normalization (, (7)) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_k(\omega)$ (Eq. (5)) is given by $\mathbf{D}d\omega,$ (8)		
$P^{T}(n,k,i), \qquad (3)$ $P^{T}(n,k,i), \qquad (4)$ (5) d signal $\mathbf{r}_{k}(\omega)$ is energy norther medium. The backscather medium. The backscather (6) $\omega)] + \zeta(\omega)$ Ing the energy normalization $(1), \qquad (7)$ et in multipath eters, the CRB of the direction for $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by	$(A_{k})\}, \qquad (3)$ $(Y^{T}(n,k,i), \qquad (4)$ (5) (5) (3) (5) (5) (6) (6) (6) (6) (6) (7)	$V_{(n,k)}(\omega).$	(2)
$p^{r_{(n,k,i)}}$. (4) (5) d signal $\mathbf{r}_k(\omega)$ is energy nor- the medium. The backscat- (6) $\omega)] + \zeta(\omega)$ Ing the energy normalization (), (7) et in multipath eters, the CRB of the direction (cor $\mathbf{r}_{L}(\omega)$ (Eq. (5)) is given by	$r_{(n,k,i)}$. (4) (5) d signal $\mathbf{r}_k(\omega)$ is energy nor- he medium. The backscat- (6) ω] + $\zeta(\omega)$ In the energy normalization (), (7) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_k(\omega)$ (Eq. (5)) is given by Dd ω , (8)	$-A_k)\},$	(3)
(5) d signal $\mathbf{r}_k(\omega)$ is energy nor- the medium. The backscat- (6) $\omega)] + \zeta(\omega)$ In the energy normalization (), (7) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_k(\omega)$ (Eq. (5)) is given by	(5) d signal $\mathbf{r}_{k}(\omega)$ is energy nor- he medium. The backscat- (6) $(\omega)] + \zeta(\omega)$ In the energy normalization (1, (1)) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by $\mathbf{D}d\omega$, (8)	$\mathcal{T}_{(n,k,i)}$.	(4)
the medium. The backscat- (6) $\omega)] + \zeta(\omega)$ Ing the energy normalization (7) et in multipath eters, the CRB of the direction $ctor \mathbf{r}_{L}(\omega)$ (Eq. (5)) is given by	he medium. The backscat- (6) $\omega)] + \zeta(\omega)$ Ing the energy normalization (7) et in multipath eters, the CRB of the direction eters r _k (ω) (Eq. (5)) is given by Dd ω , (8)	d signal $\mathbf{r}_k(\omega)$ is energy no	(5) or-
(<i>b</i>)] + $\mathbf{\zeta}(\omega)$ Ing the energy normalization (7) (7) et in multipath eters, the CRB of the direction (ctor $\mathbf{r}_{l}(\omega)$ (Eq. (5)) is given by	Ing the energy normalization (7) (7) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by $\mathbf{D}d\omega$, (8)	the medium. The backsca	at- (6)
), (7) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_{l_{*}}(\omega)$ (Eq. (5)) is given by), (7) et in multipath eters, the CRB of the direction ctor $\mathbf{r}_k(\omega)$ (Eq. (5)) is given by $\mathbf{D}d\omega$, (8)	ng the energy normalizati	on
et in multipath eters, the CRB of the direction ctor $\mathbf{r}_{l}(\omega)$ (Eq. (5)) is given by	et in multipath eters, the CRB of the direction ctor $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by $\mathbf{D}d\omega$, (8)),	(7)
eters, the CRB of the direction ctor $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by	eters, the CRB of the direction ctor $\mathbf{r}_k(\omega)$ (Eq. (5)) is given by $Dd\omega$, (8)	et in multipath	
eters, the CRB of the direction ctor $\mathbf{r}_{k}(\omega)$ (Eq. (5)) is given by	eters, the CRB of the direction ctor $\mathbf{r}_k(\omega)$ (Eq. (5)) is given by $Dd\omega$, (8)		
	$\mathbf{D}d\omega$, (8)	eters, the CRB of the directic ctor ${f r}_k(\omega)$ (Eq. (5)) is given	ion by
$\mathbf{D}d\omega$, (8)		$\mathbf{D}d\omega,$	(8)

 $\mathbf{E}d\omega$, (9)

 $^{i,1)},\cdots,e^{-j\omega au_{(k,i,M_{ik})}}]^T,$

 $\vec{\alpha}$. $H^{\bullet}_{ik}(\omega)$ can be expressed as $H^{\bullet}_{ik}(\omega) = e^{j\delta_{ik}}(\rho^{\bullet}_{ik} + j\rho_{ik}\delta^{\bullet}_{ik})$. Then, we have

$$\mathbf{D}^{H}\mathbf{D} = \sum_{i=1}^{P} |H_{ik}^{\bullet}(\omega)|^{2} = \sum_{i=1}^{P} (\rho_{ik}^{\bullet})^{2} + (\rho_{ik})^{2} (\delta_{ik}^{\bullet})^{2}$$
(10)

For the TR phase, we get the following result.

$$\mathbf{E}^{H}\mathbf{E} = \sum_{n=1}^{P} |T_{nk}^{\bullet}(\omega)|^{2} = \sum_{n=1}^{P} (\sum_{i=1}^{P} [\rho_{ni}\rho_{ik}]_{\vec{\alpha}})^{2} + (\sum_{i=1}^{P} (\rho_{ni}\rho_{ik})(\delta_{ni}^{\bullet} - \delta_{ik}^{\bullet}))^{2}, \quad (11)$$

For computing the partial derivate of the conventional Jacobian matrices D, we use the following finite difference discretization expressions

$$\frac{\partial H_{ik}(\omega)}{\partial R} = \frac{H_{ik}(\omega; R_1) - H_{ik}(\omega; R_2)}{\Delta R}$$
(12)
and
$$\frac{\partial H_{ik}(\omega)}{\partial Y} = \frac{H_{ik}(\omega; Y_1) - H_{ik}(\omega; Y_2)}{\Delta Y}$$
(13)

Similar expressions are used for the partial derivate of the Jacobian matrix E.

FDTD Electromagnetic Simulations

- environment are derived for the conventional and TR DOA estimators.
- The CRBs are expressed in terms of the contributions made by the multipath parameters to the FIM matrix.
- TR/DOA estimator compared to the conventional estimator.

References

- 2593-2610, Dec. 1991.
- Sensing. Accepted.

Both terms depend on the travel times $\{\tau_{(k,i,j)}\}_{j=1}^{M_{ik}}$ and consequently are functions of

• The CRBs for the range and DOA of a passive target embedded in a rich multipath

• Our FDTD simulation results illustrates the potential of better performance with the

[1] M. J. D. Rendas and J. M. F. Moura, "Cramer-Rao bound for location systems in multipath environments,", IEEE Trans. on Signal Processing, vol. 39, no. 12, pp.

[2] F. Foroozan and A. Asif, "Time Reversal Ground Penetrating Radar: Range Estimation with Cramer-Rao Lower Bounds", IEEE Trans. on Geoscience and Remote