
Model-basedAdaptivePerformanceLoadTesting
Cornel Barna, Marin Litoiu

cornel@cse.yorku.ca, mlitoiu@yorku.ca

Performance Load Testing
Performance testing, including load stressing, is fundamental in assessing the performance of software

components as well as of an entire software system. In general, the testing is done under operational
conditions, that is, the testing is typically based on the expected usage of the system once is deployed and
on the expected workload. It consists of the types of executed scenarios and the rate of these scenarios. A
performance test usually lasts for several hours or even a few days.

A major goal of performance testing is to uncover functional and performance problems under load and
the root cause of those problems. Functional problems are often bugs, deadlocks and memory management
bugs. Performance problems often refer to high response time or low throughput under load.

Performance testing, for most part, is done manually.

Worst Workload Mixes
A common way to model the user interaction with

the transactional systems is to define classes of ser-
vices or classes in short. A class is a service or a
group of services with a similar statistical behaviour
and specific performance requirements.

• C – the set of classes;
• K – the set of resources;
• UK – the total utilization for K ∈ K;
• UK,C – the utilization of K ∈ K by requests of
C ∈ C;

• DK,C – the demand of K ∈ K in C ∈ C;
• N = 〈N1, N2, . . . , N|C|〉 – the workload vector,

where Ni is the number of users in Ci ∈ C;
• N = N1 +N2 + · · ·+N|C| – workload intensity ;

When the workload mix changes, the bottleneck
in the system can change as well. Workload mixes
yield per class utilization at each resource; the sum
of per class utilizations equals the total utilization
of that resource:

UK =
∑
C∈C

DK,C

DR,C
UR,C = 1, for all K ∈ K (1)

where R ∈ K is a reference resource shared by all
classes of request.

If U∗R,Ci
is a solution for equations (1) and we

know N then we can compute the workload vector
N by solving the equations:

β∗i =
Ni

N
= U∗R,Ci

(2)

The Framework
We propose a framework that

• models the application, the corresponding
workloads and the environment performance;

• correlates or establishes quantitative depen-
dencies between different metrics of the system
and the workloads;

• computes and runs the worst case workloads.

The framework is adaptive, based on an autonomic
computing loop in which we monitor the execution
of each workload, analyze the current performance,
plan a new workload based on the analysis results
and then execute the new workload.

Performance
data

Component/system
under test

tests

Workload
generator

Performance
Model(Opera)

Figure 1: Adaptive performance load testing.

A performance model captures quantitative relation-
ships between inputs, states, environment and out-
put metrics of the software system.

Input
parameters (u)

Environment
parameters (p)

State
parameters (x)

Output
parameters (y)

Figure 2: A software subsystem with its performance
parameters.

The Algorithm

input: N – the initial number of users
input: Ut – the target utilization for device t

1 Tune the LQM by measuring and adjusting the
service demands for each scenario;

2 Find all extreme points by solving the equations (1);
3 Compute the switching points, P, by using (2);
4 foreach switching point p ∈ P do
5 ue,t ← −1; // estimated utilization
6 um,t ← −1; // measured utilization

// Stop when the estimated utilization is within
5% from the target utilization

7 while
∣∣∣1− ue,t

Ut

∣∣∣ > 0.05 do

8 Compute 〈N1, N2, . . . , N|C|〉 for N and p;

9 Solve model for 〈N1, N2, . . . , N|C|〉;
10 Update ue,t with the estimated value;

11 if
∣∣∣1− ue,t

Ut

∣∣∣ > 0.05 then

12 Update N using a hill climbing strategy;

13 while
∣∣∣1− um,t

Ut

∣∣∣ > 0.05 do

14 Compute 〈N1, N2, . . . , N|C|〉 for N and p;

15 Generate workload and measure the metrics;
16 Update um,t with the value measured;

17 if
∣∣∣1− um,t

Ut

∣∣∣ > 0.05 then

18 Update N using a hill climbing strategy;

Kalman filters
Tunning the LQM is not always easy because

some parameters cannot be directly measured. This
is the case for service demand. To estimate the cor-
rect values we used Kalman filters and the following
algorithm:

1 while
∣∣∣1− ue,t

um,t

∣∣∣ > 0.05 do

2 Solve model;
3 Update ue,t with the model estimated value;
4 Update um,t with the measured value;

5 if
∣∣∣1− ue,t

um,t

∣∣∣ > 0.05 then

6 Estimate service demands using Kalman
filters;

7 Update model with the estimated service
demands;

Experiments
We created a cluster with two Web Servers (Tom-

cat), one Database Server (MySQL) and one Work-
load Balancer (Apache) to distribute the incoming
web requests to the two web servers.

Workload balancer

Web servers

Database
Server Workload generator

Monitor

Figure 3: The cluster used for experiments.

We implemented three simple scenarios (classes
of service) as servlets:

insert insert a record in database
update update a record from database
select select 1000 records from database

The goal is to find the number of users, N , and
the workload mixes that will generate a CPU uti-
lization above a certain threshold.

Results
Using Kalman filters we were able to find the ser-

vice demands fast:

30

40

50

60

70

80

U
ti
liz
at
io
n
(%

)

0

10

20

1 2 3 4 5 6 7

U

Iterations

Utilization web server (measured) Utilization database (measured)

Utilization web server (estimated) Utilization database (estimated)

(a) Insert scenario.

30

40

50

60

70

80

U
ti
liz
at
io
n
(%

)

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U

Iterations

Utilization web server (measured) Utilization database (measured)

Utilization web server (estimated) Utilization database (estimated)

(b) Update scenario.

40

60

80

100

120

U
ti
liz
at
io
n
(%

)

0

20

40

1 2 3

U

Iterations

Utilization web server (measured) Utilization database (measured)

Utilization web server (estimated) Utilization database (estimated)

(c) Select scenario.

Figure 4: Finding demands for LQM using Kalman filters.

We updated the model with the demands found
by Kalman filters and tried to predict the number
of users and the workload mixes that will generate
an utilization above 50% on web servers or database
server. The results are summarized in the next table:

Switching Predicted Measured
points users # users #

〈1.00, 0.00, 0.00〉 284 284
〈0.00, 1.00, 0.00〉 284 284
〈0.00, 0.00, 1.00〉 94 94
〈0.95, 0.00, 0.05〉 259 259
〈0.98, 0.00, 0.02〉 284 284
〈0.00, 0.90, 0.10〉 259 259
〈0.00, 0.97, 0.03〉 284 284

We showed that our algorithm is capable to cor-
rectly predict the workload required to have an uti-
lization of CPU above a specified threshold.

1

