

Challenges of Authentication Protocols for WMNs

□ Wireless channels have limited bandwidth and are error-prone.

□ Wireless multi-hop routing drastically reduces network throughput.

Shared broadcast medium is vulnerable to several types of attacks such as eavesdropping, jamming, and packet interception and modification.

Distributed network architectures and operations make protocol design and implementation difficult.

Mobile devices (e.g., cell phones, PDAs) have limited storage, computing capability and power supply. Mobility requires fast hand-off mechanisms.

Weaknesses of IEEE 802.11s Authentication

□ IEEE 802.11s is a set of standards for WMNs.

□ 802.11s authentication is a centralized scheme requiring a central authentication server, resulting in *long delay, low reliability, low scalability.* The current version of 802.11s does not specify any mechanisms/protocols

that support fast hand-off.

Our Contributions [1]

A new trust model for WMNs based upon which our proposed authentication protocols are designed.

□ Ticket-based [2] authentication protocols that are efficient and resilient to attacks. No central authentication server is needed.

□ Fast authentication from one access point to another during the hand-off process using tickets.

Fast Authentication for Mobile Devices in Wireless Mesh Networks

Celia Li and Uyen Trang Nguyen

Department of Computer Science and Engineering, York University cli@cse.yorku.ca

Trust Model

A trust model defines the trust relationships among network entities.

Tickets

- A ticket [2] serves as a pass that a user submits to a system/network to allow it to verify the user's identity. We define three types of tickets:
- \Box Client Ticket T_c **Client ID** Ticket Agent ID Expiry Date Client's Public Key Signature Signed by Ticket

$\square MAP Ticket T_R$	
Router ID	
Ticket Agent ID	
Expiry Date	
Router's Public Key	
Signature Signed by Ticket Agent	

MAC: message authentication code

Fast Authentication Protocols

Login Authentication: executed when a client first logs in into the network.

 $V_{K_{MAC}}(N_{C_2}), \Theta_C$

Handover Authentication: executed when a client moves from one access point to another.

Client

Notation	Description
C	Client
R	Mesh acces
A	Ticket agen
I_x	ID number
Θ_C	Transfer tic
P_x	Public key i
T_x	Ticket issue
τ_{exp}	Expiry date
N_x	A nonce ger
Sig_x	Digital sign
MAC_{alg}	Type of MA
$E_{pub_x}(m)$	Encryption
	m using x 's
K_{MAC}	The key use
	authenticati
$V_{K_{MAC}}(m)$	Message au
	resulting fro
	algorithm a

message n

Router

 $V_{K_{MAC}}(N_C), N_R$

 Θ_C, N_C

 $V_{K_{MAC}}(N_R)$

\Box Transfer Ticket θ_c

Client ID
Ticket Agent ID
Expiry Date
MAC Algorithm
MAC Value

ss point (MAP) of entity xcket issued to a client issued to xed to xand time of a ticket nerated by xnature of entity xAC algorithm of message public key ed to produce a message ion code (Section 3.3.3) thentication code (MAC) om the application of a MAC

and a MAC key K_{MAC} on a

Performance Analysis

Computation and Communication Costs

Op.	Alg.	Time	Login	Handover	EAP-TLS
		(ms)			
E_{pub}	RSA	1.42	1	0	1
D_{pub}	RSA	33.3	1	0	1
G_{sig}	ECDSA	11.6	1	0	1
V_{sig}	ECDSA	17.2	3	0	3
MAC	HMAC	0.015	1	6	1
Hash	SHA-1	0.009	1	0	3
Total computation cost		97.93ms	0.009ms	97.96ms	
Number of messages		5	3	9	
Authentication latency		97.93+5d	0.009+3d	97.96+9dh	

EAP-TLS is the authentication protocol currently defined in IEEE 802.11s.

Authentication Latency

EAP-TLS authentication latency increases as the hop count between the client and central authentication server increases.

Authentication latency remains constant in our proposed protocols.

Conclusion

- □ We extend IEEE 802.11s standard to implement fast hand-off to support real-time applications such as voice-over-IP and audio/video conferencing.
- U We propose a novel trust model that represents the trust relationships among the entities of a WMN, and new authentication protocols based on that model.
- A client and a mesh access point (MAP) mutually authenticate each other using one-hop communications. No central authentication server is required. Fast authentication for roaming from one MAP to another is supported by using tickets.
- Performance and security analyses show that our proposed authentication protocols are efficient and resilient to various kinds of attacks.

References:

- [1] Celia Li and U.T. Nguyen, "Fast Authentication for Mobile Devices in WMNs", IEEE CCECE, Calgary, Canada, May 2010.
- [2] A. A. Pizada and C. McDonald, "Kerberos Assisted Authentication in Mobile Ad-hoc networks," Conference on Australian Computer Science, Australia, 2004.