
Comparison of Clustering Algorithms in the Context of Software Evolution

Jingwei Wu, Ahmed E. Hassan, Richard C. Holt
School of Computer Science

University of Waterloo
Waterloo ON, Canada

�j25wu,aeehassa,holt�@uwaterloo.ca

Abstract

To aid software analysis and maintenance tasks, a num-
ber of software clustering algorithms have been proposed
to automatically partition a software system into meaning-
ful subsystems or clusters. However, it is unknown whether
these algorithms produce similar meaningful clusterings for
similar versions of a real-life software system under contin-
ual change and growth.

This paper describes a comparative study of six software
clustering algorithms. We applied each of the algorithms
to subsequent versions from five large open source systems.
We conducted comparisons based on three criteria respec-
tively: stability (Does the clustering change only modestly
as the system undergoes modest updating?), authoritative-
ness (Does the clustering reasonably approximate the struc-
ture an authority provides?) and extremity of cluster distri-
bution (Does the clustering avoid huge clusters and many
very small clusters?).

Experimental results indicate that the studied algorithms
exhibit distinct characteristics. For example, the clusterings
from the most stable algorithm bear little similarity to the
implemented system structure, while the clusterings from
the least stable algorithm has the best cluster distribution.
Based on obtained results, we claim that current automatic
clustering algorithms need significant improvement to pro-
vide continual support for large software projects.

1 Introduction

A well documented architecture can improve the quality
and maintainability of a software system. However, many
existing systems often do not have their architecture docu-
mented. Moreover, the documented architecture becomes
outdated and the system structure decays as rapid changes
are made to the system to meet market pressure [7, 18]. A
high rate of turnover among developers makes the situation
even worse. Maintenance of architectural documentation is

one of many problems that confront today’s large software
projects. Software clustering holds out the promise of help-
ing in this task [13, 24].

Software clustering refers to the decomposition of a soft-
ware system into meaningful subsystems. It plays an im-
portant role in understanding legacy software systems [15],
assisting in their architectural documentation [3, 13], and
supporting their re-modularization[22, 27]. For example, a
misplaced procedure or file can be automatically discovered
and relocated to the proper subsystem to reduce unexpected
dependencies and prevent the decay of the architecture [12].

Ideally, a software clustering algorithm should be auto-
mated to provide continual support throughout the lifetime
of a large software system. More importantly, the algorithm
must produce meaningful clusterings in a stable manner. To
be meaningful, the algorithm must produce clusterings that
can help developers understand the system. A clustering al-
gorithm which places all source files from a system into two
large clusters will not be helpful to developers analyzing the
code. To be stable, the algorithm must produce clusterings
that do not vary widely from one version of the system to
the next. An algorithm which produces clusterings that vary
widely even though no major code restructuring occurred
between versions is likely not to be used by developers.

In this paper, we will compare six clustering algorithms
by applying them to subsequent versions of five large open
source systems. Our objective is to clarify to what extent
software clustering algorithms can be used to support re-
modularization and architectural documentation during the
life cycle of a large software system. We use three criteria
to evaluate the usefulness of these algorithms: C1� When
a system changes modestly, the clustering produced by an
algorithm should also change modestly; C2� An automati-
cally produced clustering should approximate the clustering
produced by an authority (e.g., the architect); and C3� Au-
tomatically produced clusters should generally not be either
huge (i.e., containing hundreds of source files) or tiny (i.e.,
containing very few source files).

The rest of this paper is organized as follows: Section 2

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Systems Prog. Lang. # Versions # Source Files Size (KLOC) Graph Data Raw Data Extraction Time

Ruby C 73 90 – 261 74 – 187 6.5MB 1.0 GB 21 mins
KSDK C/C++ 70 21 – 1156 3 – 263 82.5MB 2.5 GB 52 mins

OpenSSL C 73 593 – 845 164 – 278 74.4MB 4.2 GB 57 mins
PGSQL C 73 771 – 947 182 – 519 99.1MB 4.5 GB 59 mins
KOffice C/C++ 70 1358 – 3266 272 – 962 1235.5MB 42.0 GB 325 mins

Table 1: Properties of five target systems from 1999 to 2004. The Raw Data refers to CTSX output and Graph Data refers to
lifted graphs. Due to a CVS update problem, the last three monthly versions of KSDK and KOffice in 2004 are not available.

provides an overview of five systems chosen for the exper-
imentations. Section 3 describes the experimental setup in
the context of software evolution. Section 4 introduces a
simple ordinal measure for comparing a number of data se-
ries. Section 5 describes the experimental results obtained
using ordinal evaluation techniques. The results show that
the studied clustering algorithms exhibit distinct character-
istics in terms of stability, authoritativeness, and extremity.
Section 6 discusses several interesting observations. Sec-
tion 7 considers related work and Section 8 concludes this
paper.

2 Target Systems

To evaluate software clustering algorithms, we chose to
apply them to a number of real-life systems, all of which are
open source software and hence available for study. Table
1 gives a summary of key properties of five target systems.
They represent distinct application domains and have gone
through a number of years of development. We now briefly
describe these systems.

1. KSDK is a software development kit for the K Desktop
Environment (KDE) [8]. It offers powerful framework
support for various kinds of KDE applications.

2. KOffice is a free, integrated office suite for KDE. This
suite contains 12 major applications: KWord, KChart,
KSpread, KPresenter, Kivio, Karbon14, Krita, Kugar,
KPlato, Kexi, KFormular, and Filters [9].

3. OpenSSL is a cryptography toolkit implementing the
Secure Socket Layer (SSL) and Transport Layer Secu-
rity (TLS) network protocols and related cryptography
standards [17].

4. PostgreSQL is a free, large, SQL compliant object Re-
lational Database Management System (DBMS) [19]
that originated at the University of California at Berke-
ley in 1996. The rest of this paper will refer to Post-
greSQL as PGSQL.

5. Ruby is an interpreted scripting language designed for
quick and easy object oriented programming [21]. It
has many convenient features for text file processing
and system management.

3 Experimental Design

Figure 1 illustrates the design of our experiments. We
begin with the repository (stored in CVS) of a target system
(such as PGSQL) that we use to evaluate clustering algo-
rithms. The repository contains successive versions of the
target system. We retrieve monthly versions of the source
code, called here ��, ��, and etc. In step 1 (program ex-
traction), we extract a directed graph �� from each version
��. In this graph, each node represents a file in the target
system. Each edge represents a static dependency (such as
a reference to a variable or a data type, a call to a function,
or a call to a macro) from one file to another. In step 2 (soft-
ware clustering), we run a number of clustering algorithms,
called �, �, etc., on each graph ��, producing clusterings
���, ��� , etc. Finally, in step 3 (comparative analysis), we
use a set of criteria to evaluate the algorithms. We now dis-
cuss these steps in more detail.

3.1 Program Extraction

In the first step we extract graphs from 70 to 73 monthly
versions (see Table 1) of the target systems, as illustrated in
Figure 1. Extraction can be a difficult task due to the size
of the systems, the number of versions, and irregularities
present in the source code (e.g., syntactical errors, incom-
plete code, language dialects and software configurations).
To circumvent these difficulties, we developed a lightweight
C/C++ source code extractor called CTSX.

CTSX is built on CTags [5] and CScope [4]. Both tools
are efficient and robust in handling software systems up to
millions of lines of code. CTSX uses CTags to extract pro-
gram entities (e.g., functions, variables, and data types) and
CScope to retrieve references (e.g., function calls) to enti-
ties found by CTags. These references are then “lifted” to
the level of source files to produce directed edges between
nodes (files) in the extracted graph. This lifting to the level
of files greatly decreases the size of the graph, which is an
important consideration when dealing with many versions
of a large target system.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Step 1:
Program

Extraction

Step 2:
Software

Clustering

Step 3:
Comparative

Analysis

V1

V2

Vn

... ...

G1

G2

Gn

Source
Repository
(e.g., CVS)

Software Versions Software Graphs Software Clusterings

C2AC1A CnA...

C2BC1B CnB...Algorithm B

Algorithm A
Scores

Data Plots

Results

Figure 1: Comparative analysis of software clustering algorithms in the context of software evolution

3.2 Software Clustering

In the second step of the experiment (see Figure 1) a set
of clustering algorithms is run over graphs extracted from
each monthly version of the target system. A clustering is
created for each version by each algorithm.

We chose a set of six clustering algorithms based on
their availability and their discussion in the literature. We
limited our choice to available implementations that run in
batch mode since we needed to run each of these algorithms
many times as they were applied to different target systems
over a large number of versions. We selected software clus-
tering tools produced by researchers Anquetil, Mancoridis,
and Tzerpos. Anquetil designed a hierarchical clustering
algorithm suite, which offers a selection of association and
distance coefficients as well as update rules [1]. Four algo-
rithms from this suite were chosen and given names of the
form of CL** and SL** where ** encodes the parametriza-
tion, as described below. Mancoridis and Mitchell provided
us with their Bunch suite [13]. Tzerpos provided us his al-
gorithm for comprehension driven clustering (ACDC) [24].
We now give a brief description of the six algorithms.

1. CL75 is an agglomerative clustering algorithm based
on the Jaccard coefficient and the complete linkage up-
date rule [1]. The cut-point height for the dendrogram
is set to 0.75. The higher the cut-point, the smaller the
number of clusters in the resulting dendrogram.

2. CL90 has the same configuration as CL75 except that
its cut-point height is set to 0.90 [1].

3. SL75 is an agglomerative clustering algorithm based
on the Jaccard coefficient and the single linkage update
rule. The cut-point height is set to 0.75 [1].

4. SL90 has the same configuration as SL75 except that
its cut-point height is set to 0.90 [1].

5. ACDC is an algorithm based on program comprehen-
sion patterns and it attempts to recover subsystems that
are commonly found in manually-created decomposi-
tions of large software systems [24].

6. Bunch provides a suite of algorithms that include Hill
Climbing, Exhaustive, and Genetic Algorithms [6, 13].
We tried three different hill climbing configurations:
NAHC (nearest ascend hill climbing), SAHC (shortest
ascend hill climbing), and a customized configuration
with the minimum search space greater than 55% and
the randomized proportion of the search space equal to
20%. This paper will only discuss the third configu-
ration since NAHC and SAHC is not much different
from it based on the results we obtained. For brevity,
it will be referred to as Bunch in the rest of this paper.

3.3 Comparative Analysis

In the third step of the experiment (see Fig 1), we com-
pare the clustering algorithms based on three criteria, C1,
C2 and C3, which we have previously mentioned. We now
detail the three criteria:

C1 Stability

Similar clusterings should be produced for similar ver-
sions of a software system. This criterion emphasizes
the persistence of the clustering structure of successive
versions of an evolving software system. Under con-
ditions of small and incremental change between con-
secutive versions, an algorithm should be stable, i.e., it
should produces similar clusterings to prior months.

C2 Authoritativeness

Clusterings produced by an algorithm should resemble
clustering from some authority. An authoritative clus-
tering may be produced by a (human) architect. It may
also be derived from the directory structure of the tar-
get system. In the latter case, authoritativeness can be
seen as adherence to the source folder structure.

C3 Extremity of Cluster Distribution

The cluster size distribution of a clustering should not
exhibit extremity. In particular, a clustering algorithm
should avoid the following two situations: (1) the ma-
jority of files are grouped into one or few huge clusters
(sometimes called black holes), and (2) the majority

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

of clusters are singletons (forming what are sometimes
called dust clouds).

Based on these criteria, we conducted three comparisons
to examine how the algorithms chosen for this study are dif-
ferent from one another. The detailed information on these
comparisons will be presented in Section 5.

4 A Simple Ordinal Measure

To support our analysis of clustering algorithms over
consecutive versions of a target software system, we created
an ordinal measure for ranking a number of data series. A
data series refers to a sequence of quantitative values, for
example, �1,2,3,4�.

For series ��� and��� , we define���������	 ���� and

��������	 ���� as:

���������	 ���� �
��
 � ����
� � ��� �
�	 ��
��������

�����

��������	 ���� �
��
 � ����
� � ��� �
�	 ��
��������

�����

If we think of ��� and ��� as lines of points, the function
����� denotes the proportion of the line formed using ���

above the other line formed using ��� . A similar explana-
tion can be given to
����. We say that ��� is above ���
if ���������	 ���� � ��������� 	 ����.

Given � data series, ���, ���, ..., ��� , we have the
following equations for measuring the relative position of a
particular ��� with regard to all of the � data series.

���������� �
��

���

���������	 ���� (1)

��������� �
��

���

��������	 ���� (2)

In the next section, we will adapt these two equations to
obtain different orderings of clustering algorithms in terms
of stability, authoritativeness, and extremity.

5 Experiments and Results

This section describes the results we obtained.

5.1 Stability Comparison

Tzerpos defines a stability measure based on the ratio
of the number of “good” clusterings to the total number
of clusterings produced by a clustering algorithm [25]. He
considers a clustering obtained from a perturbed version of
the system to be good if the MoJo dissimilarity between that

clustering and the one obtained from the original version of
the system is not greater than 1% of the total number of
resources (i.e., source files). We feel that it is difficult to
determine a proper threshold in the context of real-life soft-
ware evolution, and 1% seems too optimistic in reality.

We instead used our ordinal measure (defined in Section
4) to derive a stability ordering of an algorithm in compari-
son to other algorithms. In addition, we evaluated an algo-
rithms’ stability with three ordinal values: High, Medium,
and Low. We referred to the latter method as the HML ordi-
nal evaluation.

C1 C2 C3 Cn

Sequence of clusterings

Clustering comparison

Sim1 Sim2 Sim3 Simn-1

Figure 2: Intra-sequence clustering comparison

Before presenting our stability measure, we explain how
to create similarity sequences using intra-sequence compar-
isons of consecutive clusterings as shown in Figure 2. Given
a sequence of
 clusterings, we have a sequence of
�� sim-
ilarity values denoted as �����	 ����	 ���	 �������. For
a target system, a comparison of its two consecutive clus-
terings yields a similarity or dissimilarity value depending
on the selection of similarity measures. For example, MoJo
produces dissimilarity values [23], while EdgeSim produces
similarity values [14]. Since some similarity measures like
MoJo are not reflexive, we need to perform directional com-
parison in the same direction as the target system evolves.
This is desirable if we think of a clustering as an entity mov-
ing along its own lifetime path from inception to death. We
choose MoJo for its simplicity. Correspondingly, we have
���� defined to be �������	 ����� where �����
� ��.

A measure for relative stability

Given a target system � and � clustering algorithms, ��,
��, ..., and �� , we use ������	 �� to denote the sequence
of MoJo values calculated based on intra-sequence compar-
ison over the sequence of clusterings obtained by �� from
�. A relative score of �� over �� is defined as:

�����
��

���	 �� 	 �� �
�����������	 ��	������ 	 ���

The relative score of �� over all the � clustering algorithms
is define as:

�����
��

���	 �� �
�����������	 ��� (3)

where
���� is given in Equation 2 and �� stands for
MoJo. We say that �� is more stable than �� with regard
to system � if �����

��
���	 �� 	 �� � �����

��
��� 	 ��	 ��.

When comparing � algorithms, we use Equation 3 to cal-
culate a stability score for each algorithm. Using the � ob-
tained scores, we can determine a relative stability ordering

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

of � algorithms. The greater the score, the more relatively
stable an algorithm.

A HML-based ordinal measure

Based on a data series of system growth ��, we create two
new data series: ��10 and ��30. ��10 is proportional to
�� and accounts for 10� of the number of source files with
regard to each data point in ��, and correspondingly ��30
accounts for 30�. The three data series ��10, ��30, and
�� divide the area below �� into three smaller regions. If
the MoJo series ������� �� has at least 80� of its data
points below ��10, we say the stability of �� is H (High).
If������� �� has at least 80� below ��30, �� has a score
of M (Medium). Otherwise, �� has a score of L (Low).

���
��

���� �� �

�
��
��

� if ������������	 ��	 �
�������

� elsif ������������	 ��	 �
�������

� otherwise

(4)
With this measure, we are actually measuring how stable an
algorithm is with regard to a particular target system rather
than simply stating which one is more stable than another.
For example, if a clustering algorithm has a score of H, it
means that the number of MoJo operations (i.e., moves and
joins) is less than 10� of the total number of sources in the
target system for 80 out of 100 transformations of pair-wise
consecutive clusterings produced by that algorithm.

Software System: PGSQL

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Versions

M
oJ

o

CL75 CL90

SL75 SL90

ACDC Bunch

SG30

SG10

System Growth SG

Figure 3: Stability comparison wrt PGSQL

Plots of MoJo series

Figure 3 shows a plot of data series of MoJo that were calcu-
lated for each of the six clustering algorithms with respect to
PGSQL. From the figure, we can see that the MoJo values
associated with Bunch are greater than the corresponding
MoJo values associated with the other algorithms. Recall-
ing MoJo is a dissimilarity measure, we can tell that Bunch
is less stable than the other five algorithms. We examined
the MoJo series for NAHC and SAHC. They exhibit similar

KSDK KOffice OpenSSL PGSQL Ruby ALL
Bunch ���� ���� ���� ���� ���� ����
CL90 ���� ���� ��	� ���� ���
 ����
CL75 ���� ���� ��	� ���� ���� ���	
ACDC ��	� ���
 ���� ���� ��
� ����
SL75 ���� ���� ���� 	��� ���
 ����
SL90 	���
��� 	�
�
��� ���� 	�

Table 2: Relative stability scores obtained using MoJo. The
greater the score, the more relatively stable the algorithm.

KSDK KOffice OpenSSL PGSQL Ruby ALL
Bunch L L L L L L
CL90 M M M M M M
CL75 M M M M M M
ACDC M H M M H H
SL75 H H H H H H
SL90 H H H H H H

Table 3: HML-based stability scores obtained using MoJo

behavior as the ones shown for Bunch in Figure 3. We omit
them from this paper for the sake of brevity.

The data series associated with algorithms CL90, CL75,
and ACDC reside in the middle of Figure 3. They appear in-
tertwined at some locations. We can roughly see that ACDC
appears more stable than CL75 and CL90. SL90 and SL75
are at the bottom of the figure. Clearly, they are the most
stable algorithms.

Ordinal evaluation

In Figure 3, when data series are highly intertwined it can
be difficult to obtain an ordering of several clustering algo-
rithms based on visual perception. A quantitative method
is needed. Using Equation 3, we calculated relative stabil-
ity scores for the six studied algorithms with regard to each
target system as well as the concatenation of all five target
systems. When comparing algorithms with regard to a con-
catenation of different systems, we actually concatenated
the similarity series from all those systems for each cluster-
ing algorithm and then we applied Equation 3. The scores
are given in Table 2. Those obtained using concatenation
are listed in the ALL column and they are used to determine
the overall stability ordering.

All the scores in Table 2 seem to tell the same story. In
the direction of increasing stability, the chosen algorithms
can be ordered as: Bunch, CL90, CL75, ACDC, SL75 and
SL90. There is an exception with regard to OpenSSL where
CL75 appears to be more stable than ACDC since the for-
mer scored 2.46 but the latter scored only 2.08 (see Table 2).
The cells shaded in light gray indicates this disagreement.

Similarly, we calculated an HML ordering for the algo-
rithms. The obtained scores are given in Table 3. From the
table, we can see that SL90, SL75 and ACDC are highly
stable algorithms. While Bunch is not.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

To rule out the possibility that the obtained stability or-
dering is biased due to use of MoJo, we measured the or-
dering of these algorithms using other similarity measures,
which include EdgeMoJo [26], EdgeSim and MeCl [14].
We found that EdgeSim strongly agrees with MoJo but the
other two measures slightly disagree with MoJo on the or-
dering of CL75 and ACDC and rank CL75 as relatively
more stable than ACDC. The experimental results obtained
using other similarity measures are reported in [28].

Given that our results were obtained using evolution data
from several hundred versions of multiple real-life systems
and further verified by multiple similarity measures, we can
safely state that the following stability order factually exists.

Low Medium High
Bunch CL90 CL75 ACDC SL75 SL90

5.2 Authoritativeness Comparison

Unfortunately, a stable algorithm may not produce mean-
ingful clusterings at all. For example, at one extreme, an al-
gorithm that produces only singleton clusters is stable over
time but it is not useful in practice. At the other extreme,
an algorithm that groups all source file into one notoriously
large clustering is obviously stable but not meaningful at all.
A clustering algorithm of practical use should produce clus-
terings similar to authoritative decompositions of a software
system by experienced software engineers [3]. However, an
agreed upon architecture or authoritative decomposition of
a complex software system often does not exist. This makes
it difficult to do authoritativeness comparison.

In an attempt to perform authoritativeness analysis, we
used a simple technique to create authoritative clusterings.
Our technique comprises four steps: (1) create the subsys-
tem hierarchy based on the directory structure; (2) relocate
every header file (.h) to the subsystem that directly con-
tains the related implementation file (.c); (3) merge a sub-
system with its parent if it contains less than five files; (4)
create a flat clustering with each subsystem in the remaining
hierarchy as a cluster. For well structured software systems
like KOffice and PGSQL, this technique is likely to produce
a clustering which conforms to the mental model of the de-
velopers of the system. It can be easily automated to cluster
a large number of versions.

We performed inter-sequence comparisons of clusterings
from two parallel sequences. One sequence comprises clus-
terings produced by the algorithm in analysis, and the other
contains authoritative clusterings obtained using the tech-
nique described above. Figure 4 shows how inter-sequence
comparisons are done over time. The similarity ���� is cal-
culated as �������� ����. Based on the obtained similar-
ity series ������ ����� 			� ����
, we carried out authori-
tativeness comparison using the same scoring methods for
stability analysis (see Equations 3 and 4).

C1 C2 C3 Cn

C1A C2A C3A CnA

Sequence of authoritative clusterings

Sequence of clusterings

Clustering comparison

Sim1 Sim2 Sim3 Simn

Figure 4: Inter-sequence clustering comparison

Plots of MoJo series

Figure 5 shows the MoJo series we obtained from PGSQL.
At the top of the figure, there are two MoJo series associated
with SL75 and SL90. Their data values are almost equal to
the number of source files. This fact indicates that nearly
every source file in PGSQL needs to be moved or joined
in order to transform the clustering produced by SL75 and
SL90 to the corresponding authoritative clustering. Given
that PGSQL is well structured1, we can tell that SL75 and
SL90 produce clusterings bearing little similarity to the im-
plemented structure of PGSQL.

Software System: PGSQL

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Versions

M
oJ

o

CL75 CL90

SL75 SL90

ACDC Bunch

System Growth SG

SG50

SG20

Figure 5: Authoritativeness comparison wrt PGSQL

The MoJo series for ACDC and Bunch reside in the mid-
dle of Figure 5, with the former staying mostly above the
latter. It shows that ACDC is slightly less authoritative than
Bunch. However, none of them produces clusterings re-
sembling the implemented structure of PGSQL. Roughly
speaking, 60-70� of all the source files in PGSQL need
to be moved or joined in order to transform the clusterings
produced by Bunch or ACDC to their authoritative counter-
parts. This may be due to the fact that clusterings produced
by Bunch or ACDC are too coarse (containing few clusters)
than their corresponding authoritative clusterings.

The most authoritative algorithms, CL75 and CL90, are
at the bottom of Figure 5. Their data series are intertwined

1The PostgreSQL project has six Core Members (architects) who have
strict control over the source code structure [16].

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

KSDK KOffice OpenSSL PGSQL Ruby ALL
SL90 ���� ���� ���� ���� ���� ����

SL75 ���� ���� ���� ���� ���� ����

ACDC ���� ���� ���� ���� ���� ����

Bunch ���� 	��� ���� ���� ���� ���	

CL75 ���� 	��� 	��� 	��� ���� ����

CL90 	�	� ���	 ���� 	��� 	��� 	���

Table 4: Authoritativeness scores calculated using MoJo.
The greater the score, the more the clusterings produced by
the algorithm resemble the implemented system structure.

and even overlapped. They are slightly better than Bunch.
We also manually examined the plots for other target sys-

tems. They roughly confirmed the above observations. We
omit them from this paper for the sake of brevity.

Ordinal evaluation

We provide the obtained authoritativeness scores in Table 4.
The greater the score, the more the clusterings produced by
the algorithm resemble the implemented system structure,
and consequently the more authoritative the algorithm turns
out to be. The scores from the ALL column determine an
overall ordering of the studied algorithms. The cells colored
in light gray indicate the disagreement between the overall
ordering and the one obtained with respect to a particular
target system. To derive the HML-based ordering, we chose
��20 and ��50 instead of ��10 and ��30 to relax the re-
quirements on how closer a clustering should resemble the
implemented structure. We found that all the algorithms
we studied were ranked Low. For this reason, we omit the
obtained HML scores. The final ordering is shown below.
None of these algorithms is satisfactory in producing clus-
terings that approximate the implemented structure of any
of the five target systems.

Low
SL90 SL75 ACDC Bunch CL75 CL90

We verified this ordering using three similarity measures
(EdgeMoJo, EdgeSim and MeCl), and found that they only
disagree with MoJo on the ordering of CL75 and CL90. The
experimental results are described in detail in [28].

5.3 Extremity Comparison

We studied cluster distributions over time in an attempt
to examine whether a particular clustering algorithm avoids
generating huge clusters (black holes) or many very small
clusters (dust clouds).

We again base our discussions on PGSQL. Figure 6 dis-
plays six bubble charts. In each of these charts, the � axis
represents software versions, the � axis represents the size
of the cluster, and the size of the bubble denotes the num-
ber of clusters of the same size. For example, the clustering

we obtained using SL90 from version 72 of PGSQL has 14
clusters, in which 13 clusters are singletons and one huge
cluster comprises 934 source files. This obtained clustering
is represented using two bubbles in Fig. 6(b), located at the
coordinates (72, 1) and (72, 934) respectively. The larger
bubble is 13 times big as the smaller one though the latter
(a black hole) represents a cluster of size 934. Though the
axes � and � may not be in consistent scales, but all the
bubbles throughout seven figures share the same scale of
measurement.

Figure 6 shows cluster distributions for every sixth ver-
sion in order to avoid the overlapping of bubbles in the �

direction. Each algorithm exhibits a distinct cluster distri-
bution pattern. From figures 6(a), 6(b), and 6(f), we see that
SL90, SL75, and ACDC tend to produce extreme clusters,
either huge or very small. By contrast, Bunch, CL75, and
CL90 produce more distributed clusters. However, CL75
has a tendency to generate a relatively large number of sin-
gleton clusters as shown in Fig. 6(c).

A measure for non-extreme cluster distribution

In order to quantitatively evaluate the extremity of a clus-
ter distribution, we defined a simple measure called NED
(non-extreme distribution). In this experiment, we assumed
that any clusters of size less than 5 or greater than 100 are
extreme clusters. Such an assumption is reasonable with re-
gard to the five target systems since very few clusters in the
obtained authoritative clusterings contain less than five or
more than a hundred source files.

NED is defined as the ratio of the number of source files
contained in non-extreme clusters to the total number of
source files in the target system. Clearly, the larger the NED
value, the better the distribution.

Figure 7 shows several NED data series we obtained for
each studied algorithm with regard to PGSQL and KOffice.
The NED data series obtained from KSDK, OpenSSL, and
Ruby share very similar patterns with those in Figure 7(a).
So they were omitted for brevity. From the figure, we can
see that Bunch has the best cluster distribution. However,
Bunch does not perform as well on KOffice as it does on
PGSQL. The SL75 and SL90 algorithms always group the
majority of source files into extreme clusters. The NED data
series obtained for the other three algorithms mostly remain
in the middle of the figure. In Fig. 7(b), the NED series for
CL75 and CL90 show a downward trend as KOffice grows
in size. An examination of cluster distribution reveals that
both algorithms start to form black holes.

We extend NED to derive a relative ordering and HML
ordering of non-extreme cluster distribution. We have two
scoring methods defined as follows:

�����
���

���	 �� 	 �� � �
���������	 ��	 ����� 	 ���

�����
���

���	 �� � �
���������	 ��� (5)

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Software System: PGSQL

-200

0

200

400

600

800

1000

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(a) Distributions obtained using SL75

Software System: PGSQL

-200

0

200

400

600

800

1000

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(b) Distributions obtained using SL90

Software System: PGSQL

-5

0

5

10

15

20

25

30

35

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(c) Distributions obtained using CL75

Software System: PGSQL

-20

0

20

40

60

80

100

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(d) Distributions obtained using CL90

Software System: PGSQL

0

20

40

60

80

100

120

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Versions

C
lu

st
er

 S
iz

e
Number of Clusters

(e) Distributions obtained using Bunch

Software System: PGSQL

-100

0

100

200

300

400

500

600

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Versions

C
lu

st
er

 S
iz

e

Number of Clusters

(f) Distributions obtained using ACDC

Figure 6: Bubble chart based distribution comparison of clustering algorithms wrt PGSQL

Software System: PGSQL

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Versions

N
E

D
 (

P
er

ce
nt

ag
e)

CL75
CL90
SL75
SL90
ACDC
Bunch

P75

P50

(a) NED-based distribution comparison wrt PGSQL

Software System: KOffice

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66

Versions

N
E

D
 (

P
er

ce
nt

ag
e)

CL75
CL90
SL75
SL90
ACDC
Bunch

P75

P50

(b) NED-based distribution comparison wrt KOffice

Figure 7: NED-based distribution comparison of clustering algorithms wrt PGSQL and KOffice

���
���

������ �

���
��
� if ����	

���
�
������������������

� elsif ����	
���

�
������������������

� otherwise

(6)
where �� (�����) denotes � algorithms and ������ ��

denotes the NED data series obtained from the clusterings
produced by �� with regard to system �. The ����	 is de-
fined in Equation 1. We use
��/
�� to refer to a data series
comprising only data value ����/����. The ���
	

���
evalu-

ates whether a �� is above another ��. If so, it means that

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

the algorithm producing the former �� has a better clus-
ter distribution than the algorithm producing the latter ��.
The ���

���
evaluates whether an algorithm really has a

good cluster distribution or not. If �� has a score of H, it
means that ��� of the clusterings produced by �� have a
NED value greater than ����.

Ordinal evaluation

We conducted a similar ordinal evaluation as we did to sta-
bility and authoritativeness. For brevity, we only give the
final NED-based ordering as follows, omitting the relative
scores and HML scores.

Low Medium High
SL90 SL75 ACDC CL75 CL90 Bunch

5.4 Summary

Table 5 provides a summary of ordinal evaluation we ob-
tained for each of the studied algorithms. This table serves
as the main discussion base in the next section.

Algorithms Stability Authoritativeness Non-extremity
CL75 Medium Low Low
CL90 Medium Low Medium
SL75 High Low Low
SL90 High Low Low

ACDC High Low Low
Bunch Low Low High

Table 5: A summary of ordinal evaluation

6 Discussions on the Results

This section discusses some of the obtained experimental
results. In particular, we will focus on the following obser-
vations.

SL75/SL90, the most stable but the least useful

From the figures 6(a) and 6(b), we can see that SL75 and
SL90 tend to merge smaller clusters (including singletons)
one by one into one super large cluster. As the height of the
cut point increases from 0.75 to 0.90, the number of clus-
ters in the produced clustering decreases, and the size of
the super large cluster increases. We can think of the super
large cluster as a black hole, which eventually attracts ev-
ery small cluster surrounding it. The number of source files
consumed by the black hole accounts for about 84.8-86.3%
of the total number of source files in the case of SL75 and
79.8-98.7% in the case of SL90. This explains why SL75

and SL90 appear more stable than the other four algorithms.
Once the majority of the source files are put into one super
large cluster, the resulting clustering bears little similarity
to the directory-based authoritative clustering. In terms of
MoJo, the number of moves and joins is almost equal to the
number of source files because nearly every file in the super
large cluster needs to be moved to a directory-based author-
itative cluster and every singleton cluster needs to be joined.
This explains why SL75 and SL90 are the least useful.

A clustering of the majority of source files into one black
hole cluster is equivalent to no clustering.

Algorithms in CL less stable than those in SL

Because of the complete linkage update rule, the algorithms
from the CL class are known to produce more compact clus-
ters than those from the SL class. Raghavan and Yu have
shown that graph theoretic clustering methods that produce
more compact clusters are less stable [20]. The stability
ordering we obtained agrees with the theoretic results (see
Section 5.1).

Bunch, the least stable with the best distribution

In our configuration of Bunch, every time a better neigh-
bor is being sought after, 20� of the entire search space is
randomized and at least 55� is examined in order to find
a better MQ (Model Quality) [13]. Consequently, the hill
climbing algorithm in Bunch does not perform in a deter-
ministic way and it even produces different decompositions
for the same input graph. By contrast, the other algorithms
use less randomization.

Bunch (including NAHC and SAHC) produces the best
cluster distribution. It favors neither a group of very small
clusters nor an overwhelmingly large cluster. This can be
seen from Figure 6(e).

No gain for ACDC from overusing program patterns

Since ACDC is a program pattern based algorithm [24], we
had expected that it would produce clusterings more similar
to the authoritative clusterings we obtained. However, it did
not meet our expectations.

ACDC internally has an upper limit for the size of the
obtained cluster. By default this limit is set to 20. However,
Figure 6(f) shows that ACDC produces both very large clus-
ters and very small ones. To investigate what goes wrong
in ACDC, we manually examined the clusterings obtained
from versions 12, 24, 36, 48, 60, and 72 of PGSQL. We
found two main problems regarding the use of program pat-
terns in ACDC.

1. The body-header pattern [24] results in the grouping of
the interface file (.h) and its implementation file (.c).

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

However, clustering of the obtained body-header pairs
is not done sufficiently. This results in a relatively large
number of small clusters of size 2.

2. The subgraph dominator [24] is somewhat overused.
For example, the file utility.c located in the direc-
tory tcop was recognized by ACDC as a dominator.
After we removed utility.c from the input graph,
ACDC cut the size of the largest cluster approximately
by 50�. After we further removed 2 or 3 dominators
from the input graph, no cluster in the obtained clus-
tering contains more than 100 source files. We suspect
that ACDC has internal defects in processing subgraph
dominators.

7 Related Work

Current research is mainly focused on designing algo-
rithms that partition large software systems into meaningful
subsystems. For example, early work by Belady et al. iden-
tified automatic clustering as a means to produce high-level
views of large software systems [2]. Bunch has evolved to
become a suite of algorithms to fit into various contexts in
reverse engineering [6, 13]. In addition, a variety of evalu-
ation frameworks have been proposed to evaluate the qual-
ity of clustering techniques [10, 11]. However, clustering
techniques have not been sufficiently tested and evaluated
against lifetime versions of systems from diverse domains.
In particular, the stability of clustering algorithms has not
attracted much attention.

Tzerpos and Holt examined the stability of a number of
clustering algorithms by means of generating randomly per-
turbed versions of an example system and measuring differ-
ences between the obtained clusters and the one obtained
from the original version of the system [25]. In this pa-
per, we argue that random perturbation of a fixed size sys-
tem is insufficient in simulating how changes occur in a
real world software system, since changes to software sys-
tems rarely occur in a random fashion and most software
systems are continuously growing in size. To be faithful
to the reality, we conducted stability comparison on evolu-
tion data extracted from several target systems. In addition,
our work shows that stability comparison of clustering algo-
rithms should be augmented with the analysis of meaning-
fulness (adherence to authority and non-extreme distribu-
tion). Otherwise, the results of stability comparison could
be misleading (i.e. seeing only one side of a coin).

8 Conclusions

In this paper we have asked the question of how useful
clustering algorithms might be in large software systems un-
dergoing evolutionary change.

In an attempt to gain insight into this question, we inves-
tigated the effectiveness of six clustering algorithms which
represent a range of clustering techniques and which are
supported by available batch implementations. We selected
five open source software systems, each having roughly 70
monthly versions. These systems represent a range of appli-
cations, so they can be expected to be a reasonable testing
base for clustering algorithms.

We proposed three criteria to evaluate the usefulness of
software clustering algorithms. We ran experiments to mea-
sure how well each clustering algorithm satisfies these cri-
teria. Table 5 provides a brief view of the overall results we
obtained. It indicates that:

� On the stability criteria (Are successive versions of a
target system given similar clusterings?), three algo-
rithms (SL75, SL90 and ACDC) are ranked as having
high quality, two (CL75 and CL90) as medium and the
remaining algorithm (Bunch) as low.

� On the authoritativeness criteria (Do the clusterings
reasonably approximate the implemented structure of
the target system?), all six algorithms are ranked as
having of low quality.

� On the extremity criteria (Are non-extreme cluster dis-
tributions normally produced?), Bunch is ranked as
high, CL90 as medium, then CL75, ACDC, CL75 and
SL90 as low.

Although SL75 and SL90 ranked high on stability, it ap-
pears that this is largely due to the fact that they repeatedly
produced black holes (overly large clusters) or dust clouds
(many too small clusters), as indicated by their low NED
ranking. This suggests that in practice these two algorithms
may not be that helpful.

The fact that all six algorithms are ranked low on author-
itativeness suggests that they may not be mature enough for
use in production on large systems undergoing evolution-
ary change. However, it is also possible that our technique
for generating authoritative clusterings is biased toward the
as-implemented structure of the target system.

These results are discouraging, suggesting that, for large
systems, such as we used as a basis for our testing, and for
the criteria we chosen, more work needs to be done before
these clustering algorithms are ready to be widely adopted.
However, it may be that such algorithms are useful in less
stringent environments. For example, these algorithms may
be useful in a reverse engineering exercise, by producing a
basic partitioning of a particular version of a target system,
thus eliminating a significant amount of manual effort.

Our hope is that our results spur on further efforts both
to create/improve automated clustering algorithms and to
subject these algorithms to empirical evaluations such as we
have reported in this paper.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

References

[1] N. Anquetil and T. Lethbridge. Experiments with clustering
as a software remodularization method. In Proceedings of
the 6th Working Conference on Reverse Engineering, pages
235–255, Atlanta, Georgia, USA, October 1999.

[2] L. A. Belay and C. J. Evangelisti. System partitioning and
its measure. The Journal of Systems and Software, 2:23–29,
1981.

[3] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a case
study: Its extracted software architecture. In Proceedings of
the 21st International Conference on Software Engineering,
pages 555–563, Los Angeles, California, May 1999.

[4] Cscope. Website, 2004. http://cscope.sourceforge.net.
[5] Ctags. Website, 2004. http://ctags.sourceforge.net.
[6] D. Doval, S. Mancoridis, and B. Mitchell. Automatic clus-

tering of software systems using a genetic algorithm. In Pro-
ceedings of the International Conference on Software Tech-
nology and Engineering Practice, pages 73–91, Pittsburgh,
PA, September 1998.

[7] S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 27(1):1–12, January 2001.

[8] KDE. K Desktop Environment. Website, 2004. http://www.
kde.org.

[9] KOffice. Website, 2004. http://www.koffice.org.
[10] R. Koschke and T. Eisenbarth. A framework for experimen-

tal evaluation of clustering techniques. In Proceedings of
the 8th International Workshop on Program Comprehension,
pages 201–210, Limerick, Ireland, June 2000.

[11] A. Lakhotia and J. M. Gravley. A unified framework for ex-
pressing software subsystem classification techniques. The
Journal of Systems and Software, 36(3):211–231, March
1997.

[12] R. Lange and R. W. Schwanke. Software architecture anal-
ysis: A case study. In Proceedings of the 3rd international
workshop on Software configuration management, pages 19–
28, Trondheim, Norway, June 1991.

[13] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner. Bunch:
A clustering tool for the recovery and maintenance of soft-
ware system structures. In Proceedings of the 15th Interna-
tional Conference on Software Maintenance, pages 50–59,
Oxford, England, September 1999.

[14] B. Mitchell and S. Mancoridis. Comparing the decomposi-
tions produced by software clustering algorithms using sim-
ilarity measurements. In Proceedings of the 17th Interna-
tional Conference on Software Maintenance, pages 744–753,
Florence, Italy, November 2001.

[15] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A
reverse engineering approach to system structure identifica-
tion. Journal of Software Maintenance: Research and Prac-
tice, 5(4):181–204, December 1993.

[16] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye. Evolution patterns of open-source software systems
and communities. In Proceedings of the International Work-
shop on Principles of Software Evolution, pages 76–85, Or-
lando, Florida, May 19-20 2002.

[17] OpenSSL. Website, 2004. http://www.openssl.org.
[18] D. L. Parnas. Software aging. In Proceedings of the 16th In-

ternational Conference on Software Engineering, pages 279–
287, Sorrento, Italy, May 16-21 1994.

[19] PostgreSQL. A free open source database system. Website,
2003. http://www.postgresql.org.

[20] V. V. Raghavan and C. Yu. A comparison of the stability
characteristics of some graph theoretic clustering methods.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 3.

[21] Ruby. Website, 2004. http://www.ruby-lang.org.
[22] R. W. Schwanke. An intelligent tool for re-engineering soft-

ware modularity. In Proceedings of the 13th International
Conference on Software Engineering, pages 83–92, Austin,
Texas, United States, May 1991.

[23] V. Tzerpos and R. C. Holt. MoJo: A distance metric for soft-
ware clusterings. In Proceedings of the 6th Working Confer-
ence on Reverse Engineering, pages 187–193, Atlanta, Geor-
gia, USA, October 1999.

[24] V. Tzerpos and R. C. Holt. ACDC: An algorithm for compre-
hension driven clustering. In Proceedings of the 7th Working
Conference on Reverse Engineering, pages 258–267, Bris-
bane, Australia, November 2000.

[25] V. Tzerpos and R. C. Holt. On the stability of software clus-
tering algorithms. In Proceedings of the 8th International
Workshop on Program Comprehension, pages 211–218, Lim-
erick, Ireland, June 2000.

[26] Z. Wen and V. Tzerpos. Evaluating similarity measures for
software decompositions. In Proceedings of the 20th Interna-
tional Conference on Software Maintenance, pages 368–377,
Chicago, IL, USA, September 2004.

[27] T. A. Wiggerts. Using clustering algorithms in legacy sys-
tems remodularization. In Proceedings of the 4th Working
Conference on Reverse Engineering, pages 33–43, Amster-
dam, The Netherlands, October 1997.

[28] J. Wu and R. C. Holt. Do clustering similarity measures
agree with each other? 2005. To Submit.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

