Refactoring
Refactoring - Noun: “A change made to the internal structure of
software to make it easier to understand and

cheaper to modify without changing its observable
behaviour”

« Verb: “To restructure software by applying a series
of refactorings without changing its observable
behaviour”

When to refactor Duplicated code

« Same expression in two methods of the same
class
o Use Extract Method refactoring

« All the time!
I o « Same expression in two methods of sibling
- Indications that it’s time to refactor are known as classes
code smells e Use Extract Method and Pull Up Method

. We'll examine a number of them... o If code is similar but not same, consider Form Template Method

« Duplicated code in unrelated classes

o May need to Extract Class or otherwise eliminate one of the
versions

Long Method Large Class

« The longer a method is, the more difficult it is to

« A class that tries to do too much often has too
understand

many instance variables

- Be aggressive about decomposing methods « Prime breeding ground for duplicated code

« Use good naming
« 90% of the time, just Extract Method

. Extract Class

- Extract SubClass for some of the
« What to extract? Look for comments explaining a

piece of code « Extract Interface variables

Long parameter list Divergent Change

« Hard to understand, requires frequent changes

« In OO systems, much fewer parameters are
required

« Shorten parameter lists with
Replace Parameter with Method
Preserve Whole Object
Introduce Parameter Object

« A class is commonly changed in different ways for
different reasons

« “| will have to change these three methods every
time | get a new database; | have to change these
four methods every time there is a new financial
instrument”

- Extract Class to alleviate this problem

« Every time you make a kind of change, you have
to make a lot of little changes

« Easy to miss an important change

« Move Method and Move Field to put all changes
into a single class

« You might even use Inline Class

« A method seems more interested in a class other
than the one itis in

¢ Invokes many getter methods from another class
« Move Method to where it wants to be

« Strategy and Visitor design patterns result in code
that has feature envy
o Acceptable since this way we fight divergent change

« Often there are tradeoffs in fighting code smells

Data Clumps Switch statements

« Bunches of data that hang around together ought
to be made into their own object (Extract Class)

» Delete one of the data values. Do the others make
sense?

« You can then slim parameter lists down with
Introduce Parameter Object
Preserve Whole Object

« Switch statements are often duplicated

« If you add a new clause, you need to find all
related switch statements

« Polymorphism can solve this problem

« If switching on type code
Extract Method
Move Method
Replace Type Code with Subclasses
Replace Conditional with Polymorphism

Parallel Inheritance Hierarchies Lazy class

« Special case of shotgun surgery

« Every time you make a subclass of one class, you

also have to make a subclass of another

« Eliminate duplication by having instances of one
hierarchy refer to instances of the other

« If a class is not doing enough to justify maintaining
it, it should be removed

« Refactoring often results in lazy classes that can
be removed with
Collapse Hierarchy
Inline Class

Speculative Generality Temporary Field

« Machinery added for future use that never gets
implemented

« Makes system much harder to understand

« Often identified because test cases are the only
users of a method of a class

« Remove unnecessary machinery with
Inline Class / Collapse Hierarchy
Remove Parameter / Rename Method

« Fields that are not used (or used only in certain
circumstances)

« Very difficult to determine their usefulness

« Maybe they are only used as global variables to
avoid passing them around as parameters

- Extract Class for temporary fields

Refused Bequest

« Subclasses do not want or need methods or data
of their parents

« Push Down Method and Push Down Field to
move unwanted methods to siblings

« If the subclass does not want to support the
interface of the superclass
Replace Inheritance with Delegation

- Comments are of course a sweet smell, but they
should not be used as deodorant

« When you feel the need to write a comment, first
try to refactor the code so that any comment
becomes superfluous

. Can also use
Extract Method
Rename Method
Introduce Assertion

More code smells Refactoring catalog

« Primitive obsession

. Message Chains « Many different refactorings possible

) « Martin Fowler lists about 80 of them in his book on
« Middle man

Refactoring

« Inappropriate intimacy « Other refactorings have been identified as well

« Alternative classes with different interfaces . They all come with well-defined mechanisms for
« Incomplete library class their application

» Data class

Mechanics of Extract Method Mechanics of Extract Method (cont.)

- Create a new method, and name it after the . See if the extracted code modifies any local-scope
intent?on of the method (what it does, not how it variables. If only one, it can be the return value of
does it) the new method. If more, extraction cannot

« Copy the extracted code from the source method happen as is
to the target method . Pass into the target method as parameters

. Scan the extracted code for references to any local-scope variables that are read from the
variables that are local in scope to the source extracted code
method

« Replace the extracted code in the source method
« See whether any temporary variables are used with a call to the target method
only within the extracted code. If so, declare them
in the new method

The first step: Testing

« Compile and test

« In order to refactor, you need a solid suite of tests
« Tests must be automatic and self-checking
« Run tests often, after every small change

« Frameworks such as JUnit can help with the
automation part (www.junit.org)

