
Refactoring

Refactoring

• Noun: “A change made to the internal structure of
software to make it easier to understand and
cheaper to modify without changing its observable
behaviour”

• Verb: “To restructure software by applying a series
of refactorings without changing its observable
behaviour”

When to refactor

• All the time!

• Indications that it’s time to refactor are known as
code smells

• We’ll examine a number of them...

Duplicated code

• Same expression in two methods of the same
class

• Use Extract Method refactoring

• Same expression in two methods of sibling
classes

• Use Extract Method and Pull Up Method

• If code is similar but not same, consider Form Template Method

• Duplicated code in unrelated classes
• May need to Extract Class or otherwise eliminate one of the

versions

Long Method

• The longer a method is, the more difficult it is to
understand

• Be aggressive about decomposing methods

• Use good naming

• 90% of the time, just Extract Method

• What to extract? Look for comments explaining a
piece of code

Large Class

• A class that tries to do too much often has too
many instance variables

• Prime breeding ground for duplicated code

• Extract Class

• Extract SubClass for some of the

• Extract Interface variables



Long parameter list

• Hard to understand, requires frequent changes

• In OO systems, much fewer parameters are
required

• Shorten parameter lists with
Replace Parameter with Method
Preserve Whole Object
Introduce Parameter Object

Divergent Change

• A class is commonly changed in different ways for
different reasons

• “I will have to change these three methods every
time I get a new database; I have to change these
four methods every time there is a new financial
instrument”

• Extract Class to alleviate this problem

Shotgun Surgery

• Every time you make a kind of change, you have
to make a lot of little changes

• Easy to miss an important change

• Move Method and Move Field to put all changes
into a single class

• You might even use Inline Class

Feature Envy

• A method seems more interested in a class other
than the one it is in

• Invokes many getter methods from another class

• Move Method to where it wants to be
• Strategy and Visitor design patterns result in code

that has feature envy
• Acceptable since this way we fight divergent change

• Often there are tradeoffs in fighting code smells

Data Clumps

• Bunches of data that hang around together ought
to be made into their own object (Extract Class)

• Delete one of the data values. Do the others make
sense?

• You can then slim parameter lists down with
Introduce Parameter Object
Preserve Whole Object

Switch statements

• Switch statements are often duplicated

• If you add a new clause, you need to find all
related switch statements

• Polymorphism can solve this problem

• If switching on type code
Extract Method
Move Method
Replace Type Code with Subclasses
Replace Conditional with Polymorphism



Parallel Inheritance Hierarchies

• Special case of shotgun surgery

• Every time you make a subclass of one class, you
also have to make a subclass of another

• Eliminate duplication by having instances of one
hierarchy refer to instances of the other

Lazy class

• If a class is not doing enough to justify maintaining
it, it should be removed

• Refactoring often results in lazy classes that can
be removed with

Collapse Hierarchy
Inline Class

Speculative Generality

• Machinery added for future use that never gets
implemented

• Makes system much harder to understand

• Often identified because test cases are the only
users of a method of a class

• Remove unnecessary machinery with
Inline Class / Collapse Hierarchy
Remove Parameter / Rename Method

Temporary Field

• Fields that are not used (or used only in certain
circumstances)

• Very difficult to determine their usefulness

• Maybe they are only used as global variables to
avoid passing them around as parameters

• Extract Class for temporary fields

Refused Bequest

• Subclasses do not want or need methods or data
of their parents

• Push Down Method and Push Down Field to
move unwanted methods to siblings

• If the subclass does not want to support the
interface of the superclass

Replace Inheritance with Delegation

Comments

• Comments are of course a sweet smell, but they
should not be used as deodorant

• When you feel the need to write a comment, first
try to refactor the code so that any comment
becomes superfluous

• Can also use
Extract Method
Rename Method
Introduce Assertion



More code smells

• Primitive obsession

• Message Chains

• Middle man

• Inappropriate intimacy

• Alternative classes with different interfaces

• Incomplete library class

• Data class

Refactoring catalog

• Many different refactorings possible

• Martin Fowler lists about 80 of them in his book on
Refactoring

• Other refactorings have been identified as well

• They all come with well-defined mechanisms for
their application

Mechanics of Extract Method

• Create a new method, and name it after the
intention of the method (what it does, not how it
does it)

• Copy the extracted code from the source method
to the target method

• Scan the extracted code for references to any
variables that are local in scope to the source
method

• See whether any temporary variables are used
only within the extracted code. If so, declare them
in the new method

Mechanics of Extract Method (cont.)

• See if the extracted code modifies any local-scope
variables. If only one, it can be the return value of
the new method. If more, extraction cannot
happen as is

• Pass into the target method as parameters
local-scope variables that are read from the
extracted code

• Replace the extracted code in the source method
with a call to the target method

• Compile and test

The first step: Testing

• In order to refactor, you need a solid suite of tests

• Tests must be automatic and self-checking

• Run tests often, after every small change

• Frameworks such as JUnit can help with the
automation part (www.junit.org)


