Design Patterns
Design Pattern Detection - A design pattern systematically names, explains
and evaluates an important and recurring design

problem and its solution

« Good designers know not to solve every problem
from first principles
e They reuse solutions

« This is very different from code reuse

Design Patterns - Definition Essential Elements of a Design Pattern

From the Gang of Four textbook

, Desion P - Name
DeSIgn patterns are GSlgﬂ attﬁl’ﬂs « Naming a pattern increases our design vocabulary
Tolil El ts of Reusabl
descrlp tl(')ns Of Oi?gizg)genteel:isgof(:ware « Problem
Communlcat’ng Erich Gamia « When to apply the pattern
objects and classes Raleh S

« Solution
o Elements that make up the design, their relationships,
responsibilities, and collaborations

that are customized
fo solve a general
design problem in a
particular context

SIS DNILNAWOD TYNOISSIHONd ATISIM-NOSIAAY

. Consequences
* Results and trade-offs of applying the pattern

How Design Patterns Solve Design Problems Pattern Benefits

« Finding appropriate objects

. Determining object granularity - Enable large scale reuse of software architectures

« Specifying object interfaces o .

« Explicitly capture expert knowledge and design
« Specifying object implementations trade-offs
» Putting reuse mechanisms to work « Help improve developer communication
o Inheritance vs. Composition

« Delegation « Help ease the transition to OO methods

« Designing for change

Pattern Drawbacks Pattern Description Template

« Patterns do not lead to direct code reuse - Name
« Patterns are often deceptively simple - Intent

e What does the pattern do? What problems does it address?
« You may suffer from pattern overload . Motivation

. . o A scenario of pattern applicabilit
« Patterns must be validated by experience and P PP d

debate rather than automated testing - Applicability
¢ In which situations can this pattern be applied

« Integrating patterns into a process is human

: .) - « Participants
intensive rather than a technical activity P

e Describe participating classes/objects

Pattern Description Template (cont.) Classification

« Collaborations

« How do the participants carry out their responsibilities? « Structural
. ¢ Deal with decoupling interface and implementation of classes and
« Diagram objects

e Graphical representation of the pattern .
« Behavioural

° Consequences o Deal with dynamic interaction among collections of classes and
o How does the pattern support its objectives? objects
« Implementation « Creational
o Pitfalls, language specific issues ¢ Deal with initializing and configuring collections of classes and
objects
« Examples

Detecting design patterns Template solution

« A difficult task

« Patterns are primarily a literary form . A template solution needs to be both
« No rigorous mathematical definitions

Distinctive
o AU i [e The static structure is not likely to be represented in a design that
Automatic detection beyond the state of the art of
Artificial Intelligence does not use the pattern
Unambiguous

« Instead, detect the artifacts of implementing the
solution of the design pattern

e Can only be done in one way (or in a small number of variants)

« An object adapter is unambiguous but not

« Purely structural patterns are easier to detect e
distinctive

« Purely behavioural patterns are much harder
« Most patterns are somewhere in the middle

Object Adapter Static Structure Composite vs. Decorator

request ()

Adapter

request()Q

adaptee

Adaptee

adaptee.specificRequest()

specificRequest()

« A Decorator is sometimes referred to as a
degenerate Composite.

« The static structure of the two patterns is very
similar

« The dynamic behaviour is also the same

. Static difference: A Composite contains a

collection of Components, while a Decorator
contains only one

« Intent difference: The Composite pattern groups
components into a whole. The Decorator patterns
enhances the responsibility of a component.

State vs. Strategy Analysis synergy

« Both patterns allow flexible choice from a set of

alternatives

« In their simple variants, the static structure and the

dynamic behaviour are exactly the same

« The difference: Choosing a particular behaviour
(State) vs. choosing a particular algorithm

(Strategy)

« Both static and dynamic analysis are necessary in
order to detect patterns

. Static analysis
e The static structure of the pattern has to match a subgraph of the
static structure of the software system

« Dynamic analysis
e Message passing during run-time has to match the message flow
that implements the behaviour of the pattern

Design Pattern Instances Design Pattern Detection Research Issues

« Each design pattern has a fixed set of roles, e.g.

in the Adapter pattern, there is a Client, a Target,

an Adapter, and an Adaptee

« Every detection technique attempts to discover
instances of the design pattern in the software

system being examined

« A design pattern instance is a set of classes that

match the roles

« False positive elimination

e The precision of most published approaches is quite poor, often
below 50%

« Dealing with Variants

e Patterns are conceptual. Their implementation may vary
considerably depending on the specific context

- Counting instances
¢ Different detection approaches do it differently

Detecting Design Patterns in Java software with PDE PDE - Static analysis

« Every pattern has a static definition, e.g.

. .) uses client target
- PDE is a tool that collects static and dynamic facts inherits adapter target

from a system written in Java and detects design
patterns in it

uses adapter adaptee

_ o - Javex and grok are used to extract static facts
« A possible course project is to apply PDE (or such as

another design pattern detection tool) to an open uses ClassA ClassB
source system and evaluate the results inherits ClassC ClassB

uses ClassC ClassD

« QL matches the static definition to the static facts

PDE - Dynamic analysis PDE - Dynamic analysis

. Every pattern has a dynamic definition in XML « Probekit is used to collect dynamic facts such as
<entry className="adapter" <entry
calledByClass="client" calledByClass="ContactAdapter"
thisObject="objectl" calledByMethod="setTitle"
calledByObject="ContactAdapter@145"
className="ChovnatlhImpl"
methodName="cherPatlh"

nextCallInSubtree="yes">
<entry className="adaptee"
calledByClass="adapter"

calledByObject="object 1" thisObject="ChovnatlhImpl@110">
thisObject="object2"> . If the dynamic facts do not match the dynamic
</entry> definition the candidate instance is deemed a
</entry> false positive

Results with sample pattern implementations PDE Full Results

[PDE [PINOT | FUJAEA |

N Abstract Factory -- 8
Factory Mathod 2 1 2 3
« PDE detects 22/23 patterns vE VR e v 2
N H ndiye
o Except Facade, all patterns are detected |. N y Builder } B R 1 & L]
t X x X Chain of Respansibilily --
o Facade is more an architectural design . . 5 A Tl o & Ra——
pattern \ Y \ D.'Jff;ﬂf' 2 2 CEE --: 1 5 3 1 4
v v b Interprater 5 3 1B] --. 81
A ° Herator
° PINOT deteCtS 17/23 v v v Midiator 1 | AR e -& 8 ! IR
s v W i tlemento 1
o Pattern definitions are hard coded | Ohisarsr f ! CEEEE | L)
v - Pralotype 1 -
v Prowy Hid 3 1 | :
. FUJABA detects 14/23 y : Sangleon 2 ||
) v v Etate 1 2 114 A5 36 ETTE el
e Behavioral patterns hard to detect v : - Strateg 2 2 2 2 2
v W . Tamplate Method | : £ e ek 2 i} EN
v W Visitor k] 12 12 113 3 43 8
;-Zn:n--v.\' : : v
Template Method ¥ ¥
| Visitor v W v
| Sum 22/3% | 17,23 | 14/23 |

