
Introduction to Design Patterns
Four examples

Design Patterns can be simple

• Highlighting a Shape in a GUI application

• Possible solution: Each class, such as Car,
House implements a method called highlight

• Problem: Inconsistent

• Solution: In class Shape:

public void highlight() {
translate(1,1);
draw();
translate(1,1);
draw();
translate(-2,-2);

}

Template Method Template Method Context

• An algorithm is applicable for multiple types

• The algorithm can be broken down into primitive
operations that may be different for each type

• The order of the primitive operations does not
depend on the type

Template Method Solution

• Define an abstract superclass with a method for
the algorithm and abstract methods for the
primitive operations

• Algorithm calls primitive operations in right order

• Each subclass implements primitive operations
but not the algorithm

Observer Pattern

• Intent: Define a one-to-many dependency
between objects so that when one object changes
state, all its dependents are notified and updated
automatically

• Motivation : Maintain consistency between
related objects while avoiding tight coupling
between their classes



Observer Class Diagram Observer - Participants

• Subject
• Knows its observers

• Provides interface for attaching, detaching and notifying its
observers

• Observer
• Defines an updating interface for observers

• Concrete subject
• Stores state of interest to concrete observers

• Notifies observers when state changes

• Concrete observer
• Maintains a reference to its concrete subject

• Stores state that corresponds to the state of the subject

• Implements Observer updating interface

Observer Sequence Diagram Observer - Consequences

• Abstract coupling between subject and observer
• Permits changing number of observers dynamically

• Supports broadcast communication

• Can have observers depend upon more than one
subject

• Need additional protocol to indicate what changed

• Not all observers participate in all changes

• Dangling references when subject is deleted
• Notify observers when subject is deleted

Composite Pattern

• Intent: Compose objects into tree structures
representing part-whole hierarchies

• Clients deal uniformly with individual objects and hierarchies of
objects

• Motivation: Applications that have recursive
groupings of primitives and groups

• Drawing programs, file systems

• Operations on groups are different than primitives
but users treat them in the same way

Composite Class Diagram



Composite - Consequences

• Whenever client expects a primitive it can accept
a composite

• Client is simplified by removing tag-case
statements to identify parts of the composition

• Easy to add new components by subclassing,
client does not change

• If compositions are to have restricted sets of
components run-time checking is needed

Decorator Pattern

• Intent: Attach additional responsibilities to an
object dynamically

• Provide a flexible alternative to subclassing for extending
functionality

• Motivation: Want to add responsibility to individual
objects not to entire classes

• Add properties like border, scrolling, etc to any user interface
component as needed

Decorator Class Diagram Decorator Participants

• Component: defines the interface for objects that
can have responsibilities added to them
dynamically

• Concrete component: Defines an object to which
additional responsibilities can be attached

• Decorator: Maintains a reference to a component
object and defines an interface that conforms to
Component

• Concrete decorator: Adds responsibilities to the
component

Decorator Object Diagram Decorator - Applicability

• Add responsibilities to individual objects
dynamically and transparently

• Without affecting other objects

• For responsibilities that can be withdrawn

• When subclass extension is impractical
• Avoid combinatorial explosion of possible extensions

• Class definition may be hidden or otherwise unavailable for
subclassing



Decorator - Benefits

• More flexibility than static inheritance
• Can add and remove responsibilities dynamically

• Can handle combinatorial explosion of possibilities

• Avoids feature laden classes high up in the
hierarchy

• Pay as you go when adding responsibilities

• Can support unforeseen features

• Decorators are independent of the classes they decorate

• Functionality is composed in simple pieces

Decorator - Liabilities

• From object identity point of view, a decorated
component is not identical

• Decorator acts as a transparent enclosure

• Cannot rely on object identity when using decorators

• Lots of little objects
• Often result in systems composed of many look alike objects

• Differ in the way they are interconnected, not in class or value of
variables

• Can be difficult to learn and debug


