Introduction to Design Patterns
Four examples

Design Patterns can be simple

« Highlighting a shape in a GUI application

« Possible solution: Each class, such as car,
House implements a method called highlight

« Problem: Inconsistent
« Solution: In class Shape:

public void highlight ()
translate(1,1);
draw () ;
translate(1,1);
draw () ;
translate (-

21_2>;

Template Method Template Method Context

AbstractClass
{abstract}

....

templateMethod()
primitiveOp1()
primitiveOp2()

1 Calls primitiveOpl(),

primitiveOp2()

L T

I

ConcreteClass

primitiveOp1()
primitiveOp2()

=z Abstract
methods

« An algorithm is applicable for multiple types

« The algorithm can be broken down into primitive
operations that may be different for each type

« The order of the primitive operations does not
depend on the type

Template Method Solution Observer Pattern

« Define an abstract superclass with a method for
the algorithm and abstract methods for the
primitive operations

« Algorithm calls primitive operations in right order

« Each subclass implements primitive operations
but not the algorithm

« Intent: Define a one-to-many dependency
between objects so that when one object changes
state, all its dependents are notified and updated
automatically

« Motivation : Maintain consistency between
related objects while avoiding tight coupling
between their classes

Observer Class Diagram Observer - Participants

« Subject

e Knows its observers

observers Observer e Provides interface for attaching, detaching and notifying its
gﬂacht%b;:wer]) Update() observers
etach{Observer) tor all o =
Nottyl) o--- - o R ey $ « Observer
} ¢ Defines an updating interface for observers
C Observer _ .
— — sttect [[cooorosate= « Concrete subject
] =2 subject-=GetState() s fi b
g:ttftt:tl:([}\ e———f— absenverState o Stores state of interest to concrete observers
¢ Notifies observers when state changes
subjectSiate

« Concrete observer
e Maintains a reference to its concrete subject
e Stores state that corresponds to the state of the subject

¢ Implements Observer updating interface

Observer Sequence Diagram Observer - Consequences

| Subject | | Ohserverl | | Observerz | ° AbStraCt COUp|Ing between SUbjeCt and ObSGI’VGI‘
' : ' ¢ Permits changing number of observers dynamically

|
I setstateﬂ

« Dangling references when subject is deleted
! ¢ Notify observers when subject is deleted

|
|
| « Supports broadcast communication
notify 1 !
P \ l « Can have observers depend upon more than one
update > ! : SubJeCt
|
-gstostatel | « Need additional protocol to indicate what changed
update I _ !
: o * Not all observers participate in all changes
- 1 get statp
- : .
|
|

Composite Pattern Composite Class Diagram

Component

« Intent: Compose objects into tree structures
representing part-whole hierarchies

o Clients deal uniformly with individual objects and hierarchies of
objects

operation(} 0..*
add() child
remove()
getChild()

+ o+ o+ o+

« Motivation: Applications that have recursive ;:r
groupings of primitives and groups
e Drawing programs, file systems

Leaf Composite

« Operations on groups are different than primitives + operation()
but users treat them in the same way

operation() 1
add() <> parent
remove()

getChild()

4+ o+

Composite - Consequences Decorator Pattern

« Whenever client expects a primitive it can accept

a composite

« Client is simplified by removing tag-case

statements to identify parts of the composition

- Easy to add new components by subclassing,

client does not change

« Intent: Attach additional responsibilities to an
object dynamically

¢ Provide a flexible alternative to subclassing for extending
functionality

« Motivation: Want to add responsibility to individual
objects not to entire classes

o Add properties like border, scrolling, etc to any user interface
component as needed

« If compositions are to have restricted sets of
components run-time checking is needed

Decorator Class Diagram Decorator Participants

Component

Operation()

(I

ConcreteComponent

Operation()

Decorator

Operation()

T 1

ConcreteDecoratorA

addedState

Operation()

« Component: defines the interface for objects that
can have responsibilities added to them
dynamically

« Concrete component: Defines an object to which
additional responsibilities can be attached

« Decorator: Maintains a reference to a component
object and defines an interface that conforms to

ConcreteDecoratorB

Component

Operaton()
AddedBehaviour()

« Concrete decorator: Adds responsibilities to the

component

Decorator Object Diagram Decorator - Applicability

(aBnrderDecomlor\

(as:rollbecurmw
1

\, componant @

__I'/a'l"axt\.l'lew

« Add responsibilities to individual objects
dynamically and transparently
o Without affecting other objects

component ®

ﬁ‘ « For responsibilities that can be withdrawn

L VS

« When subclass extension is impractical

» Avoid combinatorial explosion of possible extensions

e Class definition may be hidden or otherwise unavailable for
subclassing

Decorator - Benefits Decorator - Liabilities

« More flexibility than static inheritance « From object identity point of view, a decorated
¢ Can add and remove responsibilities dynamically Component is not identical
¢ Can handle combinatorial explosion of possibilities e Decorator acts as a transparent enclosure

. . . e C t rel bject identity wh ing d t
« Avoids feature laden classes high up in the annot rely on object identily when using decorators

hierarchy « Lots of little objects
» Pay as you go when adding responsibilities o Often result in systems composed of many look alike objects
¢ Can support unforeseen features « Differ in the way they are interconnected, not in class or value of
« Decorators are independent of the classes they decorate variables

o Functionality is composed in simple pieces * Can be difficult to learn and debug

