Program Analysis

Program Analysis

« Extracting information, in order to present
abstractions of, or answer questions about, a
software system

Extracting static and dynamic information from a software system

« Static Analysis: Examines the source code

« Dynamic Analysis: Examines the system as it is
executing

What are we looking for?

« Depends on our goals and the system - Entities are individuals that live in the system, and
« In almost any language, we can find out information about variable attributes associated with them.
usage

« Some examples:
¢ In an OO environment, we can find out which classes use other " .))
classes, which are a base of an inheritance structure, etc. e Classes, along with information about their superclass, their scope,

)) and where in the code they exist.
e We can also find potential blocks of code that can never be

executed in running the program (dead code) o Methods/functions and what their return type or parameter list is,
etc.
o Typically, the information extracted is in terms of entities and))
relationships e Variables and what their types are, and whether or not they are
static, etc.

Relationships Information format

. . . . " « Many different formats in use
« Relationships are interactions between the entities y

in the system. « Simple but effective: RSF

. RelationShipS include: inherit TRIANGLE SHAPE

o Classes inheriting from one another. « TA is an extension of RSF that includes a schema
o Methods in one class calling the methods of another class, and SINSTANCE SHAPE Class

methods within the same class calling one another.
o A method referencing an attribute. « GXL is an XML-like extension of TA. A blOW'Up

factor of 10 or more makes it rather cumbersome

Static Analysis CppETS

« Involves parsing the source code

« CppETS is a benchmark for C++ extractors
« Usually creates an Abstract Syntax Tree

« It consists of a collection of C++ programs that

pose various problems commonly found in parsing
and reverse engineering

« Borrows heavily from compiler technology but
stops before code generation

. lRequires a grammar for the programming . Static analysis research tools typically get about
anguage

60% of the problems right
« Can be very difficult to get right

Example program Example Q&A

#include <iostream.h>

class Hello {

public: Hello(); ~Hello();

i

Hello::Hello ()

{ cout << "Hello, world.\n"; }

« How many member methods are in the Hello
class?
Two, the constructor Hello: :Hello () and
destructor Hello: :~Hello ()

Hello::~Hello () « Where are these member methods used?

{ cout << "Goodbye, cruel world.\n"; } The constructor is called implicitly when an

main () { instance of the class is created. The destructor is
Hello h; called implicitly when the execution leaves the
return 0; scope of the instance.

Static analysis in IDEs Static analysis pipeline

« Eclipse displays compilation warnings and errors M > Parser Abstract Syntax Tree
on the fly, e.g. unused variables

« EiffelStudio automatically creates BON diagrams _’[/_.

of the static structure of Eiffel systems

4

Fact extractor

. Rational Rose, as well as some Eclipse plugins, TG E 2 BT
do the same with UML and Java

Visualizer A

» Reverse engineers have many other uses for : Fact base
static facts Metrics tool

Dynamic Analysis Instrumentation

» Provides information about the run-time behaviour
of software systems, e.g.

e Component interactions

e Event traces

e Concurrent behaviour

e Code coverage

e Memory management

« Can be done with a profiler or a debugger

« Augments the subject program with code that
transmits events to a monitoring application, or
writes relevant information to an output file

« A profiler can be used to examine the output file

and extract relevant facts from it

« Instrumentation affects the execution speed and
storage space requirements of the system

Instrumentation process Dynamic analysis pipeline

Source code
\._._-’-—

Annotation
Script

Annotator

Annotated program

e

Compiler

) J
Instrumented
Executable

Y

Instrumented
E/b' -

\

—

Dynamic Analysis Data

Clustering Algorithm

Visualizer

Metrics tool

A J

Profiler

v

Fact base

Non-instrumented approach Dynamic analysis issues

« One can also use debugger log files to obtain
dynamic information

« Disadvantage: Limited amount of information

provided

« Advantage: Less intrusive approach, more
accurate performance measurements

« Ensuring good code coverage is a key concern

« A comprehensive test suite is required to ensure
that all paths in the code will be exercised

« Results may not generalize to future executions

Static vs. Dynamic SWAGK:it

« SWAGK:It is used to generate software landscapes

« Reasons over all « Observes a small from source code
possub]e numbgr of . Based on a pipeline architecture with three
behaviours behaviours phases
(general results) (specific results) « Extract (cppx, bfx, javex)

. Conservative . Precise and fast * Manipulate (prep, linkplus, layoutplus)

e Present (Isedit)

« Challenge: « Challenge: Select . .
Choose good representative test « Currently usable for programs written in C/C++
abstractions cases and Java

The SWAGKIt Pipeline CPPX

Source code « C/C++ fact extractor based on gcc

« Extracts facts from one source file at a time

« Facts represent program information in TA format,
€.9. SINSTANCE x integer

CPPX = Prep [* linkplus [*{layoutplus —> |sedit

« Can pass normal gcc parameters using the -g

/ option

« In the assignment, we will see two other fact
Lw extractors, bfx and javex. They extract facts from
compiled code, C and Java respectively.

« Prep is a series of scripts written in Grok - A simple scripting language

« Function is to “clean up” facts from cppx so they . A relational algebraic calculator
are in a form which can be usable by the rest of

the pipeline. « Powerful in manipulating binary relations

Grok Script (1)

cat := {"Garfield", "Fluffy"}

mouse := {"Mickey", "Nancy"}

cheese := {"Roquefort", "Swiss"}
animals := cat + mouse

food := mouse + cheese
animalsWhichAreFood := animals ~ food
animalsWhichAreNotFood := animals - food
animalsWhichAreFood

animals - food

#food

mouse <= food

Grok Scripts (3)

{"Mickey"} . eat

eat . {"Mickey"}

eater := dom eat

food := rng eat

chasedBy := inv chase

topOfFoodChain := dom eat - rng eat
bottomOfFoodChain := rng eat - dom eat
bothEatAndChase := eat ~ chase
eatButNotChase := eat - chase
chaseButNotEat := chase - eat
secondOrderEat := eat o eat
anyOrderEat := eat +

Grok Script (2)

chase
chase

eat
eat

contain a.c fl

contain a.c f2
contain b.c £3 st e "
contain b.c f4 l
call f1 f2 conen
call f2 f£3
call £3 f4

f2 call 3

:= cat X mouse

:= chase + mouse X cheese

A more real example

Factbase rawFacts.rsf

We need to compute call
relations between files

A bigger real example linkplus

containfacts i &1 Input: A nested
S e e JEMOnofa

d := dom contain p (

r := rng contain set of objects

e := ent contain Output: A
roots :=d - r flattened
1eaves' = r - 4 version of the
toKeep := roots + leaves original partition
toDelete := e - toKeep

cc := contain+

delset toDelete
delrel contain
contain := cc
relToFile contain $2

« Function is to link all facts into one large graph

Combines facts residing in separate files
Resolves inter-compilation unit relationships
Merges header files together

Does some cleanup to shrink final graph

« Usage: 1inkplus list-of-files-to-link

o Produces out.1ln.ta

ayoutplus

- Adds
o Clustering of facts based on contain.rsf (created manually or from a . .
clustering algorithm) « View software landscape produced by previous
o Layout information so that graph can be displayed parts of the pipeline

* Schema information « Can make changes to landscape and save them

- Usage: « Usage: 1sedit out.ls.ta
layoutplus contain.rsf out.ln.ta

o Produces out.ls.ta

