
Program Analysis
Extracting static and dynamic information from a software system

Program Analysis

• Extracting information, in order to present
abstractions of, or answer questions about, a
software system

• Static Analysis: Examines the source code

• Dynamic Analysis: Examines the system as it is
executing

What are we looking for?

• Depends on our goals and the system
• In almost any language, we can find out information about variable

usage

• In an OO environment, we can find out which classes use other
classes, which are a base of an inheritance structure, etc.

• We can also find potential blocks of code that can never be
executed in running the program (dead code)

• Typically, the information extracted is in terms of entities and
relationships

Entities

• Entities are individuals that live in the system, and
attributes associated with them.

• Some examples:
• Classes, along with information about their superclass, their scope,

and where in the code they exist.

• Methods/functions and what their return type or parameter list is,
etc.

• Variables and what their types are, and whether or not they are
static, etc.

Relationships

• Relationships are interactions between the entities
in the system.

• Relationships include:
• Classes inheriting from one another.

• Methods in one class calling the methods of another class, and
methods within the same class calling one another.

• A method referencing an attribute.

Information format

• Many different formats in use

• Simple but effective: RSF
inherit TRIANGLE SHAPE

• TA is an extension of RSF that includes a schema
$INSTANCE SHAPE Class

• GXL is an XML-like extension of TA. A blow-up
factor of 10 or more makes it rather cumbersome

Static Analysis

• Involves parsing the source code

• Usually creates an Abstract Syntax Tree

• Borrows heavily from compiler technology but
stops before code generation

• Requires a grammar for the programming
language

• Can be very difficult to get right

CppETS

• CppETS is a benchmark for C++ extractors

• It consists of a collection of C++ programs that
pose various problems commonly found in parsing
and reverse engineering

• Static analysis research tools typically get about
60% of the problems right

Example program

#include <iostream.h>
class Hello {
public: Hello(); ~Hello();
};
Hello::Hello()
{ cout << "Hello, world.\n"; }
Hello::~Hello()
{ cout << "Goodbye, cruel world.\n"; }
main() {

Hello h;
return 0;

}

Example Q&A

• How many member methods are in the Hello
class?
Two, the constructor Hello::Hello() and
destructor Hello::~Hello()

• Where are these member methods used?
The constructor is called implicitly when an
instance of the class is created. The destructor is
called implicitly when the execution leaves the
scope of the instance.

Static analysis in IDEs

• Eclipse displays compilation warnings and errors
on the fly, e.g. unused variables

• EiffelStudio automatically creates BON diagrams
of the static structure of Eiffel systems

• Rational Rose, as well as some Eclipse plugins,
do the same with UML and Java

• Reverse engineers have many other uses for
static facts

Static analysis pipeline

Dynamic Analysis

• Provides information about the run-time behaviour
of software systems, e.g.

• Component interactions

• Event traces

• Concurrent behaviour

• Code coverage

• Memory management

• Can be done with a profiler or a debugger

Instrumentation

• Augments the subject program with code that
transmits events to a monitoring application, or
writes relevant information to an output file

• A profiler can be used to examine the output file
and extract relevant facts from it

• Instrumentation affects the execution speed and
storage space requirements of the system

Instrumentation process Dynamic analysis pipeline

Non-instrumented approach

• One can also use debugger log files to obtain
dynamic information

• Disadvantage: Limited amount of information
provided

• Advantage: Less intrusive approach, more
accurate performance measurements

Dynamic analysis issues

• Ensuring good code coverage is a key concern

• A comprehensive test suite is required to ensure
that all paths in the code will be exercised

• Results may not generalize to future executions

Static vs. Dynamic

• Reasons over all
possible
behaviours
(general results)

• Conservative

• Challenge:
Choose good
abstractions

• Observes a small
number of
behaviours
(specific results)

• Precise and fast

• Challenge: Select
representative test
cases

SWAGKit

• SWAGKit is used to generate software landscapes
from source code

• Based on a pipeline architecture with three
phases

• Extract (cppx, bfx, javex)

• Manipulate (prep, linkplus, layoutplus)

• Present (lsedit)

• Currently usable for programs written in C/C++
and Java

The SWAGKit Pipeline CPPX

• C/C++ fact extractor based on gcc

• Extracts facts from one source file at a time

• Facts represent program information in TA format,
e.g. $INSTANCE x integer

• Can pass normal gcc parameters using the -g
option

• In the assignment, we will see two other fact
extractors, bfx and javex. They extract facts from
compiled code, C and Java respectively.

Prep

• Prep is a series of scripts written in Grok

• Function is to “clean up” facts from cppx so they
are in a form which can be usable by the rest of
the pipeline.

Grok

• A simple scripting language

• A relational algebraic calculator

• Powerful in manipulating binary relations

Grok Script (1)

cat := {"Garfield", "Fluffy"}
mouse := {"Mickey", "Nancy"}
cheese := {"Roquefort", "Swiss"}
animals := cat + mouse
food := mouse + cheese
animalsWhichAreFood := animals ^ food
animalsWhichAreNotFood := animals - food
animalsWhichAreFood
animals - food
#food
mouse <= food

Grok Script (2)

chase := cat X mouse
chase
eat := chase + mouse X cheese
eat

Grok Scripts (3)

{"Mickey"} . eat
eat . {"Mickey"}
eater := dom eat
food := rng eat
chasedBy := inv chase
topOfFoodChain := dom eat - rng eat
bottomOfFoodChain := rng eat - dom eat
bothEatAndChase := eat ^ chase
eatButNotChase := eat - chase
chaseButNotEat := chase - eat
secondOrderEat := eat o eat
anyOrderEat := eat +

A more real example

Factbase rawFacts.rsf
contain a.c f1
contain a.c f2
contain b.c f3
contain b.c f4
call f1 f2
call f2 f3
call f3 f4

We need to compute call
relations between files

A bigger real example

containFacts := $1
getdb containFacts
d := dom contain
r := rng contain
e := ent contain
roots := d - r
leaves := r - d
toKeep := roots + leaves
toDelete := e - toKeep
cc := contain+
delset toDelete
delrel contain
contain := cc
relToFile contain $2

Input: A nested
partition of a
set of objects
Output: A
flattened
version of the
original partition

linkplus

• Function is to link all facts into one large graph
• Combines facts residing in separate files

• Resolves inter-compilation unit relationships

• Merges header files together

• Does some cleanup to shrink final graph

• Usage: linkplus list-of-files-to-link

• Produces out.ln.ta

layoutplus

• Adds
• Clustering of facts based on contain.rsf (created manually or from a

clustering algorithm)

• Layout information so that graph can be displayed

• Schema information

• Usage:
layoutplus contain.rsf out.ln.ta

• Produces out.ls.ta

lsedit

• View software landscape produced by previous
parts of the pipeline

• Can make changes to landscape and save them

• Usage: lsedit out.ls.ta

