Software Re-Engineering
COSC 6431

The Legacy Dilemma

Vassilios Tzerpos
bil@cse.yorku.ca
CSEB 3024

WWwW.Ccse.yorku.ca/course/6431

Legacy Systems Legacy System Replacement

« Older software systems that remain vital to an « There are business risks in Scrapping a |egacy
organization system and replacing it with a modern system:

. o L ly h | ification.
. Software systems that are developed specially for egacy systems rarely have a complete specification

e e « Busi ly on the | tem.
an organization have a long lifetime 1siness processes TEly on The fegacy sysiem

e The system may embed business rules that are not formally

« Many software systems that are still in use were documented elsewhere.

developed many years ago using technologies
that are now obsolete

¢ New software development is risky and may not be successful.

Laws of Software Evolution Legacy System Change is Expensive
Also known as Lehman’s Laws

- Different parts of the system are implemented by
different teams.

Law of Increasing Complexity
As a program is evolved its complexity increases
unless work is done to maintain or reduce it

« The system may use an obsolete programming
language.

« The system documentation is often out-of-date.

Law of Continuing Growth « The system structure may be corrupted by many
Functional content of a program must be continually years of maintenance.
increased to maintain user satisfaction over its lifetime . Techniques to save space or increase speed at

the expense of understandability may have been
used

The Legacy Dilemma Legacy System Assessment

« Organizations that rely on legacy systems must
. It is expensive and risky to replace the legacy choose a strategy for evolving these systems:
system_ o Replace the old system with a new one.
o Continue maintaining the system.

- Itis expensive to maintain the Iegacy SyStem' o Transform the system by re-engineering to improve its

maintainability.

« Businesses may choose to extend the system

lifetime by re-engineering it. « The strategy chosen should depend on the
system quality and its business value.

System Quality and Business Value Legacy System Categories

Business value

High business value . . -
Low quality High business value
: High quality

Low quality, low business value
o o These systems should be scrapped
Low-quality, high-business value
e Should be re-engineered or replaced

Low business value Low business value] .)
Low quality High quality « High-quality, low-business value
o Replace, scrap, or maintain
« High-quality, high business value
o Continue in operation using normal system maintenance
= .
System quality

Example of a Legacy Application System After Re-engineering: Database-Centred System

Program Program Program Progrmm
1 2 3 4

describes
(Program5 ' (Program 6 ' | Program 7 '

Database
management
system

Logical and
physical
data models

Maintenance is Inevitable

Software Maintenance . The system requirements are likely to change
ETEEG S AEEOREES OF EEom CiEmgs while the system is being developed because the
environment is changing.

« When a system is installed in an environment it
changes that environment and therefore changes
the system requirements.

Types of Maintenance Which type of maintenance is the most common one?

« Perfective maintenance

e Adding or modifying the system’s functionality to meet new
requirements.

« Adaptive maintenance '

| Adaptive
e Changing a system to adapt it to new hardware or operating Mmaintenance Perfective
system. (18 %) maintenance
« Corrective maintenance \‘ (65%)
e Changing a system to fix coding, design, or requirements errors. N

Evolving Systems The Maintenance Process

« It is usually more expensive to add functionality « Maintenance is triggered by change requests from
after a system has been developed rather than customers or marketing requirements

design it into the system:

e Maintenance staff are often inexperienced and unfamiliar with the o Changes are normaIIy batched and implemented
application domain. in a new release of the system.

e Programs may be poorly structured and hard to understand.

e Changes may introduce new faults as the complexity of the system ° Programs sometimes need to be repaired without
makes impact assessment difficult. a complete process iteration but this is dangerous

o The structure may be degraded due to continual change. as it leads to documentation and programs getting

e There may be no documentation available to describe the program. out of step.

Maintenance Costs Maintenance Cost Factors

« Usually greater than development costs (2 to 100* « Module independence

depending on the application). o It should be possible to change one module without affecting others.
. Affected by both technical and non-technical - Programming language

factors ¢ High-level language programs are easier to maintain.

, « Programming style
« Maintenance COI’I’Up’[S the software structure so o Well-structured programs are easier to maintain.

makes further maintenance more difficult. o .
« Program validation and testing

. Aging software can have high Suppor’[costs, e.g. e Well-validated programs tend to require fewer changes due to
. corrective maintenance.
old languages, compilers etc.

Maintenance Cost Factors Maintenance Cost Factors

- Documentation

e Good documentation makes programs easier to understand. « Program age
. . e The older the program, the more expensive it is to maintain
« Configuration management (usually).
e Good CM means that links between programs and their .
documentation are maintained. - External environment
. . . e If a program is dependent on its external environment, it may have
° Apphcatlon domain to be changed to reflect environmental changes.
* Maintenance is easier in mature and well-understood application .
domains. « Hardware stability
o e Programs designed for stable hardware will not require to change
- Staff Stab"'ty as the hardware changes.

e Maintenance costs are reduced if the same staff are involved with
them for some time.

How to measure maintainability? How to measure maintainability?

« Control complexity

« Can be measured by examining the conditional statements in the « Coupling
program. e How much use is made of other components or data structures.
. Data compIeX|ty _ « Degree of user interaction
 Complexity of data structures and component interfaces. « The more user I/O, the more likely the component is to require
. . change.
« Length of identifier names ?
« Longer names imply readability. « Speed and space requirements

Require tricky programming, harder to maintain.
« Program comments * Req y prog g

e Perhaps more comments mean easier maintenance.

Process Measurements

. Number of requests for corrective maintenance. Software Re-Engineering
. . Reorganizing and modifying existing software systems
« Average time taken to implement a change to make them more maintainable

request.
« Number of outstanding change requests.

« If any or all of these is increasing, this may
indicate a decline in maintainability.

Forward Engineering and Re-Engineering When to Re-Engineer

System Design and

New
specification implementation system

« When system changes are mostly confined to part
T of the system, then re-engineer that part.

« When hardware or software support becomes
Existing Understanding and Re-engineered obsolete
software system transformation system)

Software re-engineering « When tools to support re-structuring are available.

Re-Engineering Advantages Re-engineering Cost Factors

: « The quality of the software to be re-engineered.
« Reduced risk

e There is a high risk in new software development.

« Reduced cost . The extent of the data conversion which is
e The cost of re-engineering is often significantly less than the costs

of developing new software. required.

« The tool support available for re-engineering.

« The availability of expert staff for re-engineering.

Reverse Engineering Why is Reverse Engineering Important/Necessary?

: Reversg .Englneerlng 's the process of N « Most software that is developed is not “from
determining how a system works by analyzing its scratch”

internal constituents and/or its external behaviour. , ,
« Understanding someone else’s source code,

+ In the software world one would say that reverse specifications, designs, is difficult.
engineering is trying to figure out how a system

o What makes software more difficult to understand than a toaster or

o Inspecting the source code and documentation (if it exists) acar?

o Exercising the executable programs and observing their behavior.

Software Maintenance Problem Reverse Engineering Research

« A company hires a bright software developer to

maintain a system. « The focus has been primarily on the development
« The project manager points the developer to a of tools to help software developers understand
source code directory and says “become an software quicker and with less effort.
expert in the system as soon as possible”. . Not much work has been done on reverse
« The IBM TOBEY back-end compiler project engineering methods, however.
allowed for a 1 year learning curve (but this is
quite rare).

Sherlock Holmes Analogy Progress Has Been Made In ...

by Spiros Mancoridis

« Source code analysis
We have developed good detective tools (e.g.,
magnifying glasses, fingerprint matchers, etc)
but we have little insight on how to train « Automatic modularization (software clustering)
someone to be a good detective (e.q.,
guidelines, processes, eftc)

« Program tracing and profiling

« Program transformation

« But still a research area in its infancy ...

