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Abstract 

In this paper  we show how to recover design information 
from Java source code. We take a pat tern-based approach 
and proceed in a step by step manner deriving several layers 
of increasing abstraction. A compiler collects information 
about inheritance hierarchies and method call relations. I t  
also looks for part icular  source text  pat terns  coming from 
naming conventions or programming guidelines. 
The'  result of the compile phase is a graph acting as the 
star t ing graph of a graph grammar  tha t  describes our de- 
sign recovery process. We define criteria for the automat ic  
detection of associations and aggregations between classes, 
as well as for some of the popular  design pat terns  such as 
composite or strategy. 

1 Introduction 

Java is commonly used for the development of new software 
systems. Many large systems consisting of numerous com- 
prehensive packages are completely wri t ten in Java. Since 
Java is a new language, the software is well designed in 
general and quite well documented by instrumentat ion with 
specific comments and i l lustrated by the Javadoc tool. This 
tool, however, only produces a list of classes with their at- 
tr ibutes and methods although well presented as a hypertext  
document. For large software systems a graphical overview 
may be preferred with emphasis on structure and relation- 
ships between classes, see [2] for C + +  software. Even if 
CASE tools with roundtr ip  engineering facilities are used, 
changes of the source code often are traced back to the de- 
sign diagrams in a simplistic manner. An a t t r ibute  estab- 
lishing a new association is registered, but  the association is 
not. 
In this paper we present some ideas on how to recover design 
information from pure Java source code. We take a pat tern-  
based approach similar to [3] and proceed in a step by step 
manner deriving several layers of increasing abstraction.  
A compiler tha t  collects the usual information about  inher- 
itance hierarchies and method call relations may also look 
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for part icular  source text  pat terns  coming from naming con- 
ventions or programming guidelines. In our approach, the 
detection of predefined names tha t  identify containers, for 
example Vector  or HashTable, is used to determine the mul- 
t ipl ici ty of an association. 
The result of the compile phase is a graph whose construc- 
tion is described in section 2. This graph acts as the start ing 
graph of a graph grammar  and is subsequently transformed 
by the grammar  productions.  The productions in the graph 
grammar  describe our design recovery process. Note that  
for every software project  new pat terns  may have to be de- 
fined, so there is not one single Java design recovery graph 
grammar.  
In this paper  we i l lustrate our approach by detecting associ- 
ations and aggregations between classes, as well as some of 
the popular  design pa t te rns  like composite or strategy. For 
this purpose the s tar t ing graph contains information con- 
cerning interfaces, classes, and methods. 
The first t ransformation generalizes method relations to 
those of containing classes (see section 3). In section 4 we 
derive higher order relations between classes like association 
or delegation. Section 5 then introduces criteria to detect 
some of the well known design pat terns  and shows their ap- 
plicabili ty for the Java AWT package. Our notat ion follows 
the Unified Modeling Language UML [10]. There is only 
one pass through the source code, each subsequent phase 
relies on the results of the previous phase but  may also re- 
trieve information from deeper levels down to the original 
da ta  base. In order to prepare the transformations we al- 
ways s ta r t  matching pat terns  in the most abstract  graph, 
and hence decrease our search space for the detection of 
more detailed patterns.  

2 Construction of the Data Base 

For our purpose we need information about  the class and in- 
terface hierarchies, about  a t t r ibutes  and methods of classes 
and relatively detailed s ta tements  about  the call of methods. 
In part icular  we parse the source code, look for character- 
istic pat terns  and gather  the following relations. In these 
descriptions we use the common prefix notat ion in the text  
and infix in the formal definitions. 

• class extends class 

• interface extends interface 
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• class implements interface 
We build up the two inheritance structures for classes 
and interfaces and their interrelation. 

• class references class 

• class references interface 
The term references (class, class) means that  the class 
has an attribute of the type of the second class. This 
relationship may be an association or aggregation [10]. 
To distinguish between these two relations, we regis- 
ter, if the containing class initializes a new instance 
of the attribute. This is, however, not treated as an 
additional relation, but as a specific kind of the ref- 
erences relation. We are not interested in attributes 
of primitive types. In fact, one of our generalization 
steps will be to disregard pure data classes that  behave 
like primitive types. Note that  in Java the second class 
may also be an interface. Hence there is also a relation 
references (class, interface). Again, we do not collect 
all attributes of a class, but we always interpret an at- 
tribute of class type as a candidate for an association 
to the corresponding class. 

• class owns method 
In contrast to attributes the containment of methods 
is helpful information, as we will see later. 

• method calls method 
The calls (method, method) relation may be split to 
more detailed relations that  are helpful in several con- 
texts. In particular, we differentiate between calls in- 
voked for: 

this the same object 
super its ancestor 
attrib an attribute 
local a local variable of a method 
param a method parameter 
result a method result 
static call of a static class method 

These kinds may be used to recover associations more 
exactly. 
Calls of methods for the same object are very com- 
mon and therefore do not contribute much informa- 
tion. The same holds for calls to the ancestor, that  
indicate that  an inherited method is redefined. Such 
calls may be discarded, therefore. 
In Java the call of a static method often substitutes a 
globally available function. This holds in particular for 
standard classes of the language like System or Math. 
So these calls are skipped. 
Some programmers prefer to localize calls of methods 
via attributes i.e. they declare a local object in the 
method and initialize it with the attr ibute of the class. 
Often this is accompanied by a downcast of the at- 
tribute. We, therefore, recommend an even finer in- 
vestigation of the calls (local) relation and collect more 
information from the initialization. 
We further register how many different objects or 
methods are called inside the body of the method. 
This information may be used to estimate the cohe- 
sion and coupling and helps for the detection of some 
design patterns (see 4.2). 

• class downcasts class 
The most surprising relation may be the downcast of 
a class to one of its heirs. This is a specific Java prop- 
erty indicating a narrowing of the type of an attribute. 
Downcasts are quite common in Java software. 
Casts between the primitive types do not deliver any 
information important for the design recovery and 
hence are removed. Downcasts from the source type 
0bj ec t  indicate the actual element type of containers, 
all others may help to further investigate the calls re- 
lation. 

• method creates class 
This means that  the method creates an instance of the 
class by invoking its constructor. 

Multiplicity is indicated by array type attributes or by at- 
tributes like Vector or Hashtable. For these containers we 
determine the most general element type. 
Altogether we consider a graph with 3 different node types 
and 8 different edge types. 
S = (V, E, ¢, ~/) with 
V -- CLASS U INTERFACE U METHOD, 
E C CLASS x CLASS U INTERFACE x INTERFACE 
U CLASS x INTERFACE U CLASS x METHOD U 
METHOD x METHOD U METHOD x CLASS, 
¢ : V -+ T E X T  x T Y P E  ~ 
~? : E -+TEXT x T E X T  x MULTIPLICITY 
where ¢(c) denotes the name for a class or interface and 
¢(m) describes the name, return type and parameter types 
for a method with n - 1 parameters. 
The set of edges E is subset of the union of the 6 cartesian 
products described in the bullet list above. All edges are 
directed. There may exist more than one edge between the 
same nodes. Loops may also occur in the graph. 
~/is the edge labeling consisting of three parts where the lat- 
ter two are optional. The first component of the edge label 
specifies the edge type, owns, calls, e.g. For edges of type 
calls the second label denotes the specific kind, local, attrib, 
e.g. The third edge label denotes the multiplicity of the re- 
lation. Currently only one and many  are distinguished. 

3 Filtering the Graph 

3.1 Complete Subgraphs 

Now this very comprehensive graph has to be filtered to 
obtain a clearly structured overview of the underlying soft- 
ware. One way is to separate the graph according to the 
different edge types. This leads to the inheritance hierar- 
chies of classes and interfaces. Formally this is a subgraph 
construction. 
The other edge types describe more local information and 
thus their full subgraphs do not present valuable informa- 
tion. 

3.2 Unification of Classes and Interfaces 

The difference between classes and interfaces helps to spec- 
ify the structure of design patterns more clearly. Hence, 
we do not recommend their unification, although the graph 
becomes simpler. 
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3.3 Method Call Graphs 

The method call graph may be simplified by neglecting the 
labels and then a transformation to a relation cal ls(c lass ,  
class). 
m l  ca l l s  m 2  A Cl O w n s  m l  A c20wnsm2 ~ cl  ca l l s  c2 
(ml ,m2 : m e t h o d s ,  cl,c2 : c l a s s e s )  
We now may additionally drop the recursive calls to the class 
itself. 
A further simplification could be obtained, if we look into 
the e x t e n d s  and i m p l e m e n t s  relations and only keep the 
call to the most general class or interface. 
Based on the original data base, a subset of the calls 
(method, method) relation can be obtained by defining the 
uses  relation. 
A method m l  u s e s  another method m2, if 
e = m l  ca l l s  ms E E A z}(e)2 = t h i s  
i.e. calls it by the same object. 

3.4 Creation 

The crea tes  relation can be generalized to a class-class rela- 
tion. 
3 m ~  : m l  c r e a t e s  c2 A c~ o w n s  m l  ~ cl  c r e a t e s  c2 
( m l  : m e t h o d ,  c l , c 2  : c l a s s e s )  
This creation occurs in the constructor or in another 
method. The initialization of an attr ibute is another source 
of the crea tes (c lass ,  class) relation. 
Cl r e f e r e n c e s ( i n i t )  c2 ~ Cl c r e a t e s  c2 

4 Association, Aggregation and Delegation 

4.1 Association and Aggregation 

The intersection of the cal l s (c lass ,  class) relation with the 
r e f e rences  relation yields the association relation. 

c l  a s s o c  c2 ~ c l  ca l l s  c2 A cl r e f e r e n c e s  c2 

We do not consider associations coming from temporary 
calls via method result and locM values. We also disre- 
gard those based on method parameters. For a less strin- 
gent viewpoint, those associations may also be taken into 
account. 
An association is an aggregation, if the referenced object is 
created by the class, hence the intersection of the assoc  and 
the crea tes  relation is computed. 

cl a g g r e g  c2 ¢==~ c l  a s s o c  c2 A c l  c r e a t e s  c2 

The multiplicity of an association can be obtained from the 
type of the attribute. If more than one at tr ibute of the 
same type are referenced, this can mean that  there is one 
o n e - t o - m a n y  association or several different links between 
the two classes. We decide for different o n e - t o - o n e  associa- 
tions, if the intersection of the set of methods called for each 
attr ibute is empty, otherwise we assume a o n e  - to  - m a n y  
relationship. 
Note that all our associations are unidirectional. A bidi- 
rectional link certainly has to be created, if the methods 
responsible for each direction call each other. For a less 
detailed view of the model, however, it helps to unify all 
different associations between two classes. 

4.2 Delegation 

Delegation means the shift of the responsibility of a method 
to another object that  frequently occurs in the "program- 
ming by contract" style. 
m l  d e l e g a t e s  m 2 ,  if 
e = m l  ca l l s  m 2  E E A ~}(e)2 ~ t h i s  
A - ~  m 3  ¢ m 2  E E : m l  ca l l s  m 3  
or V m  C E :  m l  c a l l s  m ~ ¢ ( m l ) ~  = ¢ ( m ) ~ .  

On the class level, a delegation is a stronger relation than 
an association: 
cl  a s s o c  c2 A 3 m i  C c~ : m l  d e l e g a t e s  m 2  
cl d e l e g a t e s  c2. 

A delegation is assumed, if only one method is called or if all 
called methods have the name of the calling method (given 
as the first component of the method label). However, this 
may be too restrictive in another context. 

4.3 Result 

In this section we have shown how the most important re- 
lations in object-oriented design methods, the association 
and aggregation, can be derived from the source code by 
the combination of simpler, easy to find patterns. For the 
detection of such basic patterns like calls (method,method) 
we construct a dedicated parser and analyze the parse trees. 
This approach is similar to [5], e.g. Other systems are based 
on regular expressions, like grep or perl scripts. A very inter- 
esting lexically-based approach is described in [8]. Similar 
patterns may be extracted by software information systems 
(e.g. CIA [2], Sniff [1]). 
If we apply all of the transformations described in this sec- 
tion, we obtain a graph that represents the static structure 
of a program showing classes and interfaces together with 
their inheritance and association relations. 
Our pattern-based design recovery has thus contributed to 
the static program analysis. The static structure graph is 
given by a set of relations, it can be used as input for further 
tools. For example a dedicated layout algorithm [9] has been 
developed for these kinds of graphs. 

5 Higher Order Patterns 

Based on the static structure graph higher order patterns 
like the well known design patterns may be recovered. In this 
paper we show how composite, strategy or bridge patterns 
[4] can be revealed. A discussion, how to discover patterns 
from [4] may be found in [6]. Note, however, that we only 
work out the structural aspects of the patterns, so slightly 
different implementations may not be found whereas some 
other clusters may randomly match our pattern. 
The discovered patterns are used to insert new nodes and 
edges into the graph. There are two possible ways for graph 
transformations. The first follows the UML notation where 
class diagrams are not changed, but additional pattern sym- 
bols with connections to the constituents of the pattern are 
drawn. In the second way patterns are considered as new 
units of the software. So a pattern is a kind of super-node 
in our structure graph that  hides the relations inside the 
pattern. 
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5.1 Composite Pattern 

A composite pa t te rn  is the recursive structure in an inher- 
itance tree, where one of the leaves is an aggregation of 
several roots. This pa t te rn  can be discovered in our graph. 

Component l_$__ I 
"".,delegates 

I 
Simple [ Composite ~ - ~  

Figure 1: Structure of the composite pa t te rn  (from [3]) 

Start  with a class C, collect all its descendants and see, if 
one of them holds a multiple aggregation to the root and 
delegates via that  link, then there is high evidence for a 
composite pattern,  where class C plays the role of "com- 
ponent", the picked out descendant class and its heirs act 
as "composite" and all other descendants are "leaves". The 
layered approach is obvious in this procedure. We star t  with 
the basic relation, derive s tructural  pat terns  like aggregation 
or delegation, and then recover design patterns.  
Note, that  our really simple graph pa t te rn  generalizes the 
original composite pat tern,  since we take the transit ive clo- 
sure of the inheritance relation and do not require that  the 
component already offers the full interface of the composite 
or that  all components of the composite are called in a loop 
[4]. Nevertheless the number of wrongly found composite 
pat terns is low. 
We either transform the graph by introducing a new node 
type PATTERN and draw accordingly labeled edges to 
the relevant classes, or, we use an alternative transforma- 
tion tha t  creates supernodes and hence abandons a certain 
amount of the information gathered. 
SUB(C) = {DID extends* C} 
Note: extends* denotes the transit ive closure of the extends 
relation. 
Check, if 
3D 6 SUB(C) : D aggreg(multiple) C A D delegates C 

composite(C, "D , ,4) 
where 7) = SUB(D) and ,4 = SUB(C) - SUB(D).  
We can transform this ternary relation into the usual binary 
structure of our graph by construction of super-nodes for 
sets of classes. T) inherits C, .4 inherits C with corresponding 
labels. 

5.2 Strategy Pattern 

Characteristic for the strategy pa t te rn  [4] is the delegation 
of an algorithm to an interface or a class where the choice 
of different subclasses is possible. 
In Java we only consider interfaces. We do not impose 
any further syntactic or semantic restrictions to identify the 
strategy pat tern  which leads to the situation, that  we cannot 
distinguish s t rategy from similar pat terns  like state. 
Start  with class C and an interface D, where C delegates D. 
All classes B from B implements D, which provide imple- 
mentations of the delegated methods offer a different s trat-  
egy. Very close to the s t rategy pat tern,  where emphasis is 

. . - "  . . . . . . . .  - - . .  ~legates 

[Context ~ [ S~ategy I 

+ 
I I lConcreteStrategyAl[eoncreteStrategyBI 

Figure 2: Structure of the strategy pat tern  (from [3]) 

put  on the algorithm, is the s ta te  pa t te rn  [4], where the 
behavior associated with a part icular  state of the client is 
encapsulated. 
As a simplification of our graph, all classes implement- 
ing the interface D may be omit ted and a new edge 
C deleg_strategy D is introduced. 

5.3 Bridge Pattern 

Characterist ic for the bridge pa t te rn  are two parallel hier- 
archies, one for a more abst ract  model and the other for 
its implementation. Each element of the model hierarchy 
holds a link to a corresponding element of the implementa- 
tion part .  This link is usually established by an association 
or aggregation between the two roots. I t  is inherited down 
the hierarchies. This association is used to delegate the im- 
plementation. In other words, it is a hierarchy of strategy 
patterns.  Sometimes it suffices, if the model is implemented 
using the inherited interface, but  sometimes a more specific 
interface has to be used. This is visible in Java source code 
by a narrowing downcast. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  delegates 

Abstraction ~:> Implementation 

SpecialAbstraction ConcreteImplA 

ConcretelmplB 

Figure 3: Structure of the bridge pat tern  (from [3]) 

Note that  the s t ructural  view of the bridge pat tern  in [4] 
only concentrates on one element in the hierarchy and is 
identical to s t rategy or state. Therefore the bridge pat tern 
cannot be distinguished from other design pat terns using 
the structural  view of [4]. Our approach will also classify 
bridges without downcasts as strategies. 
We now define pat terns  for our restricted view of the bridge 
pattern.  
Star t  with class C and interface D where C delegates D. 
Check if both  are roots of inheritance hierarchies and if 

13 



"i-ill 
<<interface>> I i n 

LayoutManager.[...,~ Contai er <: 

t 

r I . . . . . . .  -r--1 I i 

FlowLayout Panel 

BorderLayout 

Component 

I 
° , o  

I 
Window 

FocusManager I 

I 
TextComponent 

I TextField [ TextArea 

> <<interface>> 1 
ComponentPeer 

<<interface>> 
ContainerPeer 

delegates 

Figure 4: Case study: A part of the Java AWT library 

downcasting is used in the second hierarchy. This downcast- 
ing indicates that  the association or delegation of the two 
roots is refined for some of the subclasses. 
Let C 6 CLASS, D 6 INTERFACE, where C delegates D 
i f3A 6 S U B ( C ) ,  B 6 SUB(D) 
with A calls(local) B A D downeasts B 

A calls(attrib) B ~ A delegates B. 
This also gives high evidence for a bridge pat tern where C 
and D are the roots of the hierarchies. All subclasses of the 
two linked hierarchies contribute to the bridge. Note that 
the implications hold for the AWT package and most Java 
software. 
Again we insert a new pattern node "bridge" with edges to 
the roots of the two hierarchies. 

5.4 Summary 

We have developed criteria to discover design patterns that 
are are completely based on the structure of the source code. 
The patterns help to understand the architecture of the Java 
source code. It is an extension to existing work on this 
field such as [7], because we can detect more instances of 
a pattern than approaches strictly relying on the pattern 
structures in [4]. The reason for this is that  we collect more 
information from the source code, for example method calls. 
The presence of interfaces in Java code makes it easier to 
define the structure of a pattern in contrast to C + + .  
The stepwise detection of more and more general patterns 
seems to be promising for the discovery of design information 
from source code. We want to demonstrate the approach in a 
small case study that was introduced in the last section. We 
are working on a compiler to construct the fundamental data 
base from Java source code and a tool for pat tern matching 
and graph traffsformations. 

6 Case Study: The AWT Package 

We illustrate our approach by recovering design information 
from the Java AWT package (Here: AWT Version 1.0). 

We start with the Component class the ancestor of all GUI 
classes. We find four references to 

ComponentPeer peer; Container parent; 
Color foreground; Font font; 

Component owns 73 methods. The call relation is general- 
ized to classes. We detect the following relations. 

Component calls(attrib) Conta iner  
Component calls(local) Conta iner  
Component calls(attrib) ComponentPeer 
Component calls(local) ComponentPeer 
Component calls(static) Toolkit 
Component calls(result) Toolkit 
Component calls(param) Graphics 
Component calls(this) Component 
Component calls(local) Window 
Component calls(param) Event 
Component calls(static) System 
Component calls(param) Print Stream 

The local calls tO ComponentPeer and Conta iner  can be 
changed to calls(attrib) by closer inspection of the initial- 
ization. The local call to Window reduces to a calls(this) via 
downcasting. So we notice a downcast from Component to 
Window. 

Hence associations to Container and ComponentPeer are de- 
rived, that both turn out to be delegations, see for example, 
methods disable or setForeground. 

° .°  

public void setForeground(Color c) { 
foreground = c; 
if (peer != null) { 

c = getForeground(); 
if (c != null) { 
peer.setForeground(c); 
} 

} 
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Whereas the former does not lead to one of our patterns, 
because Conta iner  is no interface, the latter is an indication 
for the bridge pattern, because one root of a hierarchy of 
classes delegates to a root of a hierarchy of interfaces. 
The class Container extends Component, it references 
LayoutManager and an array of Component which is created 
by attribute initialization. 

public class Container extends Component { 
int ncomponents; 
Component component[] = new Component[4]; 
LayoutManager layoutMgr; 

The following 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 
Container 

call relations are found: 
calls(static) System 
calls(local) ContainerPeer 
calls(this) Container 
calls(attrib) Conta iner  
calls(param) Component 
calls(attrib) Component 
calls(super) Component 
calls(local) Component 
calls(local) Component 
calls(local) LayoutManager 
calls(attrib) LayoutManager 
calls(param) Graphics 
calls(local) Graphics 
calls(param) Event 

The deeper look at the initialization shows that  most 
calls(local) transform to ealls(attrib). Let us illustrate this, 
by considering the following method. 

public Component add(String name, Component comp) { 
Component c = add(comp); 
LayoutManager layoutMgr = this.layoutMgr; 
if (layoutMgr != null) { 

layoutMgr.addLayoutComponent(name, comp); 
} 

return c; 

The addLayoutComponent is called for the local variable 
layoutMgr which is indeed the attr ibute layoutMgr initial- 
ized in line 3. 
We further find a downcasting from ComponentPeer to 
Cont a inerPeer .  

public Insets insets() { 
ContainerPeer peer = (ContainerPeer)this.peer; 
return (peer != null) ? peer.insets() 

: new Insets(O, O, O, 0); 
} 

t h i s  .peer is the inherited attr ibute of type ComponentPeer. 
Since Conta iner  creates the array Component [] we derive a 
multiple aggregation that turns out to be a delegation by a 
closer look at some of the methods, addNotify, for example. 

public void addNotifyO { 
for (int i = 0 ; i < ncomponents ; i++) { 

component [i] . addNot ify () ; 
> 
super, addNotify() ; 

) 

The information obtained so far recovers the composite pat- 
tern. Container ,  and hence all its heirs play the role of 
"composite" of arbitrary components. All other children of 
Component act as "leaves" 
Conta iner  further delegates to 

• LayoutManager 

• Conta inerPeer  

• Conta iner  itself (via the pa ren t  attribute) 

The delegation to LayontManager gives a hint to check for 
a strategy or bridge pattern. Since LayoutManager is imple- 
mented by several classes: FlowLayout, BorderLayout etc. 
we conclude the strategy pattern. 
The third delegation to Conta inerPeer  indeed delivers the 
bridge pattern. Because a container and its peer are each 
part of the corresponding hierarchy and there is downcasting 
of the peer classes, all ingredients of the bridge pattern have 
been found. In fact, we have a larger bridge comprising 
nearly all components. 
The delegation to Conta iner  itself does not lead to one of 
our three sample patterns. 

* . .  Component ] 

Figure 5: Case study: Composite pattern 

r 2 . . . . . . . . . .  r - - 1 

i i 

i 

FlowLayout II 
i 
i 

Figure 6: Case study: Strategy pattern 

Let us take a closer look at two other classes. 
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r 
I I 

Component ' c o ~ r  toenrfentPeer 1 

<<interface>> 
ContainerPeer 

Figure 7: Case study: Bridge pattern 

[8] G. Murphy, D. Notkin: Lightwight Lexical Source 
Model Extraction, ACM Trans on Software Engineer- 
ing and Methodology 5,3, 1996, pp.262-292. 

[9] J. Seemann: Extending the Sugiyama Algorithm for 
Drawing UML Class Diagrams: Towards Automatic 
Layout of Object-Oriented Software Diagrams, in: Proc. 
Graph Drawing '97, LNCS 1353, Springer-Verlag, 1997, 
pp. 415-424. 

[10] Rational Software Corporation: The Unified Mod- 
eling Language 1.1, h t t p : / / w w w . r a t i o n a l . c o m / u ~ / ,  
September 1997. 

Window extends and calls(attrib) Container,  but this asso- 
ciation is neither a delegation nor an aggregation, therefore 
no new composite pattern is detected. 
It further aggregates a FocusManager and delegates to it. 
This is, however, not a strategy pattern, since FocusManager 
is a single class. Generalization to several different 
FocusManagers would preferably be done by such a strat- 
egy. 
BorderLayout implements LayoutManager, it references 
5 Components. The relation BorderLayout calls(attrib) 
Component may lead to a pattern. From a closer look to the 
sets of the methods we derive a multiple association with a 
"composite"-like delegation, but since BorderLayout is no 
heir of Component obviously no composite pattern must be 
derived. 
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