
Pattern-Based Design Recovery of Java Software

J o c h e n S e e m a n n a n d J f i r g e n W o l f f v o n G u d e n b e r g
L e h r s t u h l f i i r I n f o r m a t i k I I

U n i v e r s i t g t W f i r z b u r g
A m H u b l a n d , 97074 W i i r z b u r g , G e r m a n y

{ s e e m a n n , w o l f f } @ i n f o r m a t i k . u n i - w u e r z b u r g . d e

Abstract

In this paper we show how to recover design information
from Java source code. We take a pat tern-based approach
and proceed in a step by step manner deriving several layers
of increasing abstraction. A compiler collects information
about inheritance hierarchies and method call relations. I t
also looks for part icular source text pat terns coming from
naming conventions or programming guidelines.
The' result of the compile phase is a graph acting as the
star t ing graph of a graph grammar tha t describes our de-
sign recovery process. We define criteria for the automat ic
detection of associations and aggregations between classes,
as well as for some of the popular design pat terns such as
composite or strategy.

1 Introduction

Java is commonly used for the development of new software
systems. Many large systems consisting of numerous com-
prehensive packages are completely wri t ten in Java. Since
Java is a new language, the software is well designed in
general and quite well documented by instrumentat ion with
specific comments and i l lustrated by the Javadoc tool. This
tool, however, only produces a list of classes with their at-
tr ibutes and methods although well presented as a hypertext
document. For large software systems a graphical overview
may be preferred with emphasis on structure and relation-
ships between classes, see [2] for C + + software. Even if
CASE tools with roundtr ip engineering facilities are used,
changes of the source code often are traced back to the de-
sign diagrams in a simplistic manner. An a t t r ibute estab-
lishing a new association is registered, but the association is
not.
In this paper we present some ideas on how to recover design
information from pure Java source code. We take a pat tern-
based approach similar to [3] and proceed in a step by step
manner deriving several layers of increasing abstraction.
A compiler tha t collects the usual information about inher-
itance hierarchies and method call relations may also look

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT "98 11/98 Florida, USA
© 1998 ACM 1-58113-108-9/9810010...$5.00

for part icular source text pat terns coming from naming con-
ventions or programming guidelines. In our approach, the
detection of predefined names tha t identify containers, for
example Vector or HashTable, is used to determine the mul-
t ipl ici ty of an association.
The result of the compile phase is a graph whose construc-
tion is described in section 2. This graph acts as the start ing
graph of a graph grammar and is subsequently transformed
by the grammar productions. The productions in the graph
grammar describe our design recovery process. Note that
for every software project new pat terns may have to be de-
fined, so there is not one single Java design recovery graph
grammar.
In this paper we i l lustrate our approach by detecting associ-
ations and aggregations between classes, as well as some of
the popular design pa t te rns like composite or strategy. For
this purpose the s tar t ing graph contains information con-
cerning interfaces, classes, and methods.
The first t ransformation generalizes method relations to
those of containing classes (see section 3). In section 4 we
derive higher order relations between classes like association
or delegation. Section 5 then introduces criteria to detect
some of the well known design pat terns and shows their ap-
plicabili ty for the Java AWT package. Our notat ion follows
the Unified Modeling Language UML [10]. There is only
one pass through the source code, each subsequent phase
relies on the results of the previous phase but may also re-
trieve information from deeper levels down to the original
da ta base. In order to prepare the transformations we al-
ways s ta r t matching pat terns in the most abstract graph,
and hence decrease our search space for the detection of
more detailed patterns.

2 Construction of the Data Base

For our purpose we need information about the class and in-
terface hierarchies, about a t t r ibutes and methods of classes
and relatively detailed s ta tements about the call of methods.
In part icular we parse the source code, look for character-
istic pat terns and gather the following relations. In these
descriptions we use the common prefix notat ion in the text
and infix in the formal definitions.

• class extends class

• interface extends interface

l0

• class implements interface
We build up the two inheritance structures for classes
and interfaces and their interrelation.

• class references class

• class references interface
The term references (class, class) means that the class
has an attribute of the type of the second class. This
relationship may be an association or aggregation [10].
To distinguish between these two relations, we regis-
ter, if the containing class initializes a new instance
of the attribute. This is, however, not treated as an
additional relation, but as a specific kind of the ref-
erences relation. We are not interested in attributes
of primitive types. In fact, one of our generalization
steps will be to disregard pure data classes that behave
like primitive types. Note that in Java the second class
may also be an interface. Hence there is also a relation
references (class, interface). Again, we do not collect
all attributes of a class, but we always interpret an at-
tribute of class type as a candidate for an association
to the corresponding class.

• class owns method
In contrast to attributes the containment of methods
is helpful information, as we will see later.

• method calls method
The calls (method, method) relation may be split to
more detailed relations that are helpful in several con-
texts. In particular, we differentiate between calls in-
voked for:

this the same object
super its ancestor
attrib an attribute
local a local variable of a method
param a method parameter
result a method result
static call of a static class method

These kinds may be used to recover associations more
exactly.
Calls of methods for the same object are very com-
mon and therefore do not contribute much informa-
tion. The same holds for calls to the ancestor, that
indicate that an inherited method is redefined. Such
calls may be discarded, therefore.
In Java the call of a static method often substitutes a
globally available function. This holds in particular for
standard classes of the language like System or Math.
So these calls are skipped.
Some programmers prefer to localize calls of methods
via attributes i.e. they declare a local object in the
method and initialize it with the attr ibute of the class.
Often this is accompanied by a downcast of the at-
tribute. We, therefore, recommend an even finer in-
vestigation of the calls (local) relation and collect more
information from the initialization.
We further register how many different objects or
methods are called inside the body of the method.
This information may be used to estimate the cohe-
sion and coupling and helps for the detection of some
design patterns (see 4.2).

• class downcasts class
The most surprising relation may be the downcast of
a class to one of its heirs. This is a specific Java prop-
erty indicating a narrowing of the type of an attribute.
Downcasts are quite common in Java software.
Casts between the primitive types do not deliver any
information important for the design recovery and
hence are removed. Downcasts from the source type
0bj ec t indicate the actual element type of containers,
all others may help to further investigate the calls re-
lation.

• method creates class
This means that the method creates an instance of the
class by invoking its constructor.

Multiplicity is indicated by array type attributes or by at-
tributes like Vector or Hashtable. For these containers we
determine the most general element type.
Altogether we consider a graph with 3 different node types
and 8 different edge types.
S = (V, E, ¢, ~/) with
V -- CLASS U INTERFACE U METHOD,
E C CLASS x CLASS U INTERFACE x INTERFACE
U CLASS x INTERFACE U CLASS x METHOD U
METHOD x METHOD U METHOD x CLASS,
¢ : V -+ T E X T x T Y P E ~
~? : E -+TEXT x T E X T x MULTIPLICITY
where ¢(c) denotes the name for a class or interface and
¢(m) describes the name, return type and parameter types
for a method with n - 1 parameters.
The set of edges E is subset of the union of the 6 cartesian
products described in the bullet list above. All edges are
directed. There may exist more than one edge between the
same nodes. Loops may also occur in the graph.
~/is the edge labeling consisting of three parts where the lat-
ter two are optional. The first component of the edge label
specifies the edge type, owns, calls, e.g. For edges of type
calls the second label denotes the specific kind, local, attrib,
e.g. The third edge label denotes the multiplicity of the re-
lation. Currently only one and many are distinguished.

3 Filtering the Graph

3.1 Complete Subgraphs

Now this very comprehensive graph has to be filtered to
obtain a clearly structured overview of the underlying soft-
ware. One way is to separate the graph according to the
different edge types. This leads to the inheritance hierar-
chies of classes and interfaces. Formally this is a subgraph
construction.
The other edge types describe more local information and
thus their full subgraphs do not present valuable informa-
tion.

3.2 Unification of Classes and Interfaces

The difference between classes and interfaces helps to spec-
ify the structure of design patterns more clearly. Hence,
we do not recommend their unification, although the graph
becomes simpler.

l l

3.3 Method Call Graphs

The method call graph may be simplified by neglecting the
labels and then a transformation to a relation cal ls(c lass ,
class).
m l ca l l s m 2 A Cl O w n s m l A c20wnsm2 ~ cl ca l l s c2
(ml ,m2 : m e t h o d s , cl,c2 : c l a s s e s)
We now may additionally drop the recursive calls to the class
itself.
A further simplification could be obtained, if we look into
the e x t e n d s and i m p l e m e n t s relations and only keep the
call to the most general class or interface.
Based on the original data base, a subset of the calls
(method, method) relation can be obtained by defining the
uses relation.
A method m l u s e s another method m2, if
e = m l ca l l s ms E E A z}(e)2 = t h i s
i.e. calls it by the same object.

3.4 Creation

The crea tes relation can be generalized to a class-class rela-
tion.
3 m ~ : m l c r e a t e s c2 A c~ o w n s m l ~ cl c r e a t e s c2
(m l : m e t h o d , c l , c 2 : c l a s s e s)
This creation occurs in the constructor or in another
method. The initialization of an attr ibute is another source
of the crea tes (c lass , class) relation.
Cl r e f e r e n c e s (i n i t) c2 ~ Cl c r e a t e s c2

4 Association, Aggregation and Delegation

4.1 Association and Aggregation

The intersection of the cal l s (c lass , class) relation with the
r e f e rences relation yields the association relation.

c l a s s o c c2 ~ c l ca l l s c2 A cl r e f e r e n c e s c2

We do not consider associations coming from temporary
calls via method result and locM values. We also disre-
gard those based on method parameters. For a less strin-
gent viewpoint, those associations may also be taken into
account.
An association is an aggregation, if the referenced object is
created by the class, hence the intersection of the assoc and
the crea tes relation is computed.

cl a g g r e g c2 ¢==~ c l a s s o c c2 A c l c r e a t e s c2

The multiplicity of an association can be obtained from the
type of the attribute. If more than one at tr ibute of the
same type are referenced, this can mean that there is one
o n e - t o - m a n y association or several different links between
the two classes. We decide for different o n e - t o - o n e associa-
tions, if the intersection of the set of methods called for each
attr ibute is empty, otherwise we assume a o n e - to - m a n y
relationship.
Note that all our associations are unidirectional. A bidi-
rectional link certainly has to be created, if the methods
responsible for each direction call each other. For a less
detailed view of the model, however, it helps to unify all
different associations between two classes.

4.2 Delegation

Delegation means the shift of the responsibility of a method
to another object that frequently occurs in the "program-
ming by contract" style.
m l d e l e g a t e s m 2 , if
e = m l ca l l s m 2 E E A ~}(e)2 ~ t h i s
A - ~ m 3 ¢ m 2 E E : m l ca l l s m 3
or V m C E : m l c a l l s m ~ ¢ (m l) ~ = ¢ (m) ~ .

On the class level, a delegation is a stronger relation than
an association:
cl a s s o c c2 A 3 m i C c~ : m l d e l e g a t e s m 2
cl d e l e g a t e s c2.

A delegation is assumed, if only one method is called or if all
called methods have the name of the calling method (given
as the first component of the method label). However, this
may be too restrictive in another context.

4.3 Result

In this section we have shown how the most important re-
lations in object-oriented design methods, the association
and aggregation, can be derived from the source code by
the combination of simpler, easy to find patterns. For the
detection of such basic patterns like calls (method,method)
we construct a dedicated parser and analyze the parse trees.
This approach is similar to [5], e.g. Other systems are based
on regular expressions, like grep or perl scripts. A very inter-
esting lexically-based approach is described in [8]. Similar
patterns may be extracted by software information systems
(e.g. CIA [2], Sniff [1]).
If we apply all of the transformations described in this sec-
tion, we obtain a graph that represents the static structure
of a program showing classes and interfaces together with
their inheritance and association relations.
Our pattern-based design recovery has thus contributed to
the static program analysis. The static structure graph is
given by a set of relations, it can be used as input for further
tools. For example a dedicated layout algorithm [9] has been
developed for these kinds of graphs.

5 Higher Order Patterns

Based on the static structure graph higher order patterns
like the well known design patterns may be recovered. In this
paper we show how composite, strategy or bridge patterns
[4] can be revealed. A discussion, how to discover patterns
from [4] may be found in [6]. Note, however, that we only
work out the structural aspects of the patterns, so slightly
different implementations may not be found whereas some
other clusters may randomly match our pattern.
The discovered patterns are used to insert new nodes and
edges into the graph. There are two possible ways for graph
transformations. The first follows the UML notation where
class diagrams are not changed, but additional pattern sym-
bols with connections to the constituents of the pattern are
drawn. In the second way patterns are considered as new
units of the software. So a pattern is a kind of super-node
in our structure graph that hides the relations inside the
pattern.

12

5.1 Composite Pattern

A composite pa t te rn is the recursive structure in an inher-
itance tree, where one of the leaves is an aggregation of
several roots. This pa t te rn can be discovered in our graph.

Component l_$__ I
"".,delegates

I
Simple [Composite ~ - ~

Figure 1: Structure of the composite pa t te rn (from [3])

Start with a class C, collect all its descendants and see, if
one of them holds a multiple aggregation to the root and
delegates via that link, then there is high evidence for a
composite pattern, where class C plays the role of "com-
ponent", the picked out descendant class and its heirs act
as "composite" and all other descendants are "leaves". The
layered approach is obvious in this procedure. We star t with
the basic relation, derive s tructural pat terns like aggregation
or delegation, and then recover design patterns.
Note, that our really simple graph pa t te rn generalizes the
original composite pat tern, since we take the transit ive clo-
sure of the inheritance relation and do not require that the
component already offers the full interface of the composite
or that all components of the composite are called in a loop
[4]. Nevertheless the number of wrongly found composite
pat terns is low.
We either transform the graph by introducing a new node
type PATTERN and draw accordingly labeled edges to
the relevant classes, or, we use an alternative transforma-
tion tha t creates supernodes and hence abandons a certain
amount of the information gathered.
SUB(C) = {DID extends* C}
Note: extends* denotes the transit ive closure of the extends
relation.
Check, if
3D 6 SUB(C) : D aggreg(multiple) C A D delegates C

composite(C, "D , ,4)
where 7) = SUB(D) and ,4 = SUB(C) - SUB(D).
We can transform this ternary relation into the usual binary
structure of our graph by construction of super-nodes for
sets of classes. T) inherits C, .4 inherits C with corresponding
labels.

5.2 Strategy Pattern

Characteristic for the strategy pa t te rn [4] is the delegation
of an algorithm to an interface or a class where the choice
of different subclasses is possible.
In Java we only consider interfaces. We do not impose
any further syntactic or semantic restrictions to identify the
strategy pat tern which leads to the situation, that we cannot
distinguish s t rategy from similar pat terns like state.
Start with class C and an interface D, where C delegates D.
All classes B from B implements D, which provide imple-
mentations of the delegated methods offer a different s trat-
egy. Very close to the s t rategy pat tern, where emphasis is

. . - " - - . . ~legates

[Context ~ [S~ategy I

+
I I lConcreteStrategyAl[eoncreteStrategyBI

Figure 2: Structure of the strategy pat tern (from [3])

put on the algorithm, is the s ta te pa t te rn [4], where the
behavior associated with a part icular state of the client is
encapsulated.
As a simplification of our graph, all classes implement-
ing the interface D may be omit ted and a new edge
C deleg_strategy D is introduced.

5.3 Bridge Pattern

Characterist ic for the bridge pa t te rn are two parallel hier-
archies, one for a more abst ract model and the other for
its implementation. Each element of the model hierarchy
holds a link to a corresponding element of the implementa-
tion part . This link is usually established by an association
or aggregation between the two roots. I t is inherited down
the hierarchies. This association is used to delegate the im-
plementation. In other words, it is a hierarchy of strategy
patterns. Sometimes it suffices, if the model is implemented
using the inherited interface, but sometimes a more specific
interface has to be used. This is visible in Java source code
by a narrowing downcast.

. delegates

Abstraction ~:> Implementation

SpecialAbstraction ConcreteImplA

ConcretelmplB

Figure 3: Structure of the bridge pat tern (from [3])

Note that the s t ructural view of the bridge pat tern in [4]
only concentrates on one element in the hierarchy and is
identical to s t rategy or state. Therefore the bridge pat tern
cannot be distinguished from other design pat terns using
the structural view of [4]. Our approach will also classify
bridges without downcasts as strategies.
We now define pat terns for our restricted view of the bridge
pattern.
Star t with class C and interface D where C delegates D.
Check if both are roots of inheritance hierarchies and if

13

"i-ill
<<interface>> I i n

LayoutManager.[...,~ Contai er <:

t

r I -r--1 I i

FlowLayout Panel

BorderLayout

Component

I
° , o

I
Window

FocusManager I

I
TextComponent

I TextField [TextArea

> <<interface>> 1
ComponentPeer

<<interface>>
ContainerPeer

delegates

Figure 4: Case study: A part of the Java AWT library

downcasting is used in the second hierarchy. This downcast-
ing indicates that the association or delegation of the two
roots is refined for some of the subclasses.
Let C 6 CLASS, D 6 INTERFACE, where C delegates D
i f3A 6 S U B (C) , B 6 SUB(D)
with A calls(local) B A D downeasts B

A calls(attrib) B ~ A delegates B.
This also gives high evidence for a bridge pat tern where C
and D are the roots of the hierarchies. All subclasses of the
two linked hierarchies contribute to the bridge. Note that
the implications hold for the AWT package and most Java
software.
Again we insert a new pattern node "bridge" with edges to
the roots of the two hierarchies.

5.4 Summary

We have developed criteria to discover design patterns that
are are completely based on the structure of the source code.
The patterns help to understand the architecture of the Java
source code. It is an extension to existing work on this
field such as [7], because we can detect more instances of
a pattern than approaches strictly relying on the pattern
structures in [4]. The reason for this is that we collect more
information from the source code, for example method calls.
The presence of interfaces in Java code makes it easier to
define the structure of a pattern in contrast to C + + .
The stepwise detection of more and more general patterns
seems to be promising for the discovery of design information
from source code. We want to demonstrate the approach in a
small case study that was introduced in the last section. We
are working on a compiler to construct the fundamental data
base from Java source code and a tool for pat tern matching
and graph traffsformations.

6 Case Study: The AWT Package

We illustrate our approach by recovering design information
from the Java AWT package (Here: AWT Version 1.0).

We start with the Component class the ancestor of all GUI
classes. We find four references to

ComponentPeer peer; Container parent;
Color foreground; Font font;

Component owns 73 methods. The call relation is general-
ized to classes. We detect the following relations.

Component calls(attrib) Conta iner
Component calls(local) Conta iner
Component calls(attrib) ComponentPeer
Component calls(local) ComponentPeer
Component calls(static) Toolkit
Component calls(result) Toolkit
Component calls(param) Graphics
Component calls(this) Component
Component calls(local) Window
Component calls(param) Event
Component calls(static) System
Component calls(param) Print Stream

The local calls tO ComponentPeer and Conta iner can be
changed to calls(attrib) by closer inspection of the initial-
ization. The local call to Window reduces to a calls(this) via
downcasting. So we notice a downcast from Component to
Window.

Hence associations to Container and ComponentPeer are de-
rived, that both turn out to be delegations, see for example,
methods disable or setForeground.

° .°

public void setForeground(Color c) {
foreground = c;
if (peer != null) {

c = getForeground();
if (c != null) {
peer.setForeground(c);
}

}

14

Whereas the former does not lead to one of our patterns,
because Conta iner is no interface, the latter is an indication
for the bridge pattern, because one root of a hierarchy of
classes delegates to a root of a hierarchy of interfaces.
The class Container extends Component, it references
LayoutManager and an array of Component which is created
by attribute initialization.

public class Container extends Component {
int ncomponents;
Component component[] = new Component[4];
LayoutManager layoutMgr;

The following
Container
Container
Container
Container
Container
Container
Container
Container
Container
Container
Container
Container
Container
Container

call relations are found:
calls(static) System
calls(local) ContainerPeer
calls(this) Container
calls(attrib) Conta iner
calls(param) Component
calls(attrib) Component
calls(super) Component
calls(local) Component
calls(local) Component
calls(local) LayoutManager
calls(attrib) LayoutManager
calls(param) Graphics
calls(local) Graphics
calls(param) Event

The deeper look at the initialization shows that most
calls(local) transform to ealls(attrib). Let us illustrate this,
by considering the following method.

public Component add(String name, Component comp) {
Component c = add(comp);
LayoutManager layoutMgr = this.layoutMgr;
if (layoutMgr != null) {

layoutMgr.addLayoutComponent(name, comp);
}

return c;

The addLayoutComponent is called for the local variable
layoutMgr which is indeed the attr ibute layoutMgr initial-
ized in line 3.
We further find a downcasting from ComponentPeer to
Cont a inerPeer .

public Insets insets() {
ContainerPeer peer = (ContainerPeer)this.peer;
return (peer != null) ? peer.insets()

: new Insets(O, O, O, 0);
}

t h i s .peer is the inherited attr ibute of type ComponentPeer.
Since Conta iner creates the array Component [] we derive a
multiple aggregation that turns out to be a delegation by a
closer look at some of the methods, addNotify, for example.

public void addNotifyO {
for (int i = 0 ; i < ncomponents ; i++) {

component [i] . addNot ify () ;
>
super, addNotify() ;

)

The information obtained so far recovers the composite pat-
tern. Container , and hence all its heirs play the role of
"composite" of arbitrary components. All other children of
Component act as "leaves"
Conta iner further delegates to

• LayoutManager

• Conta inerPeer

• Conta iner itself (via the pa ren t attribute)

The delegation to LayontManager gives a hint to check for
a strategy or bridge pattern. Since LayoutManager is imple-
mented by several classes: FlowLayout, BorderLayout etc.
we conclude the strategy pattern.
The third delegation to Conta inerPeer indeed delivers the
bridge pattern. Because a container and its peer are each
part of the corresponding hierarchy and there is downcasting
of the peer classes, all ingredients of the bridge pattern have
been found. In fact, we have a larger bridge comprising
nearly all components.
The delegation to Conta iner itself does not lead to one of
our three sample patterns.

* . . Component]

Figure 5: Case study: Composite pattern

r 2 r - - 1

i i

i

FlowLayout II
i
i

Figure 6: Case study: Strategy pattern

Let us take a closer look at two other classes.

15

r
I I

Component ' c o ~ r toenrfentPeer 1

<<interface>>
ContainerPeer

Figure 7: Case study: Bridge pattern

[8] G. Murphy, D. Notkin: Lightwight Lexical Source
Model Extraction, ACM Trans on Software Engineer-
ing and Methodology 5,3, 1996, pp.262-292.

[9] J. Seemann: Extending the Sugiyama Algorithm for
Drawing UML Class Diagrams: Towards Automatic
Layout of Object-Oriented Software Diagrams, in: Proc.
Graph Drawing '97, LNCS 1353, Springer-Verlag, 1997,
pp. 415-424.

[10] Rational Software Corporation: The Unified Mod-
eling Language 1.1, h t t p : / / w w w . r a t i o n a l . c o m / u ~ / ,
September 1997.

Window extends and calls(attrib) Container, but this asso-
ciation is neither a delegation nor an aggregation, therefore
no new composite pattern is detected.
It further aggregates a FocusManager and delegates to it.
This is, however, not a strategy pattern, since FocusManager
is a single class. Generalization to several different
FocusManagers would preferably be done by such a strat-
egy.
BorderLayout implements LayoutManager, it references
5 Components. The relation BorderLayout calls(attrib)
Component may lead to a pattern. From a closer look to the
sets of the methods we derive a multiple association with a
"composite"-like delegation, but since BorderLayout is no
heir of Component obviously no composite pattern must be
derived.

Acknowledgement

We like to thank the referees whose valuable comments
helped to improve the presentation of our ideas.

References

[1] W. Bischoffberger: S n i f f - A Pragmatic Approach to
a C + + Programming Environment, Proc of the 1992
USENIX C++ Conference, 1992.

[2] J. Grass, Y. Chen: The C + + Information Abstractor,
Proc of the 1990 USENIX C++ Conference, 1990.

[3] R. Kazman, M. Burth : Assessing Architectural Com-
plexity, in P. Nesi, F. Lehner (eds.): Proc. of the 2nd
Euromicro Conference on Software Maintenance and
Reengineering, IEEE CS press, 1998, pp. 104-112.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns, Elements of Reusable Object-Oriented Soft-
ware, Addison Wesley, 1995.

[5] W. Griswold, D. Atkinson:" Managing the Design Trade-
offs for a Program Understanding and Transformation
Tool, J. Syst. Softw. 30,1, 1995, pp 99-116

[6] L. Hankewitz: Object-Oriented Design Recovery based
on Source Code, (in German), Masters Thesis,
Wiirzburg University, 1997.

[7] C. Kr~imer, L. Prechelt: Design Recovery by Auto-
mated Search for Structural Design Patterns in Object-
Oriented Software, in: Proc. Working Conference on
Reverse Engineering, IEEE CS press, 1996, pp. 208-215.

16

