
Software Aging

Invited Plenary Talk

David Lorge Parnas

Communications Research Laboratory
Department of Electrical and Computer Engineering

McMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT
Programs, like people, get old. We can’t prevent

aging, but we can understand its causes, take steps to
limits its effects, temporarily reverse some of the
damage it has caused, and prepare for the day when
the software is no longer viable. A sign that the
SofnYare Engineering profession has matured will be
that we lose our preoccupation with the first release
and focus on the long term health of our products.
Researchers and practitioners must change their
perception of the problems of sojhare development.
Only then will Sojhare Engineering deserve to be
called Engineering.

1 What nonsense!

scientists to the title of this paper.
I can easily imagine the reaction of some computer

“Software is a mathematical product;
mathematics doesn’t decay with time. If a theorem
was correct 200 years ago, it will be correct
tomorrow. If a program is correct today, it will be
correct 100 years from now. If it is wrong 100 years
from now, it must have been wrong when it was
written. It makes no sense to talk about software
aging.”

Like many such statements, the imagined quote is
true but not really relevant. Software products do ex-
hibit a phenomenon that closely resembles human ag-
ing. Old software has begun to cripple its once-proud
owners; many products are now viewed as a burden-
some legacy from the past. A steadily increasing
amount of effort is going into the support of these
older products. Like human aging, software aging is

inevitable, but like human aging, there are things that
we can do to slow down the process and, sometimes,
even reverse its effects.

Software aging is not a new phenomenon, but it is
gaining in significance because of the growing eco-
nomic importance of software and the fact that in-
creasingly, software is a major part of the “capital” of
many high-tech firms. Many old software products
have become essential cogs in the machinery of our
society. The aging of these products is impeding the
further development of the systems that include
them.

The authors and owners of new software products
often look at aging software with disdain. They be-
lieve that, if the product had been designed using to-
day’s techniques, it wouldn’t be causing problems.
Such remarks remind me of a young jogger scoffing
at an 86 year old man (who, unknown to the jogger,
was a champion swimmer into his 50’s) and saying
that he should have had more exercise in his youth.
Just as we will all (if we are lucky) get old, software
aging can, and will occur in all successful products.
We must recognise that it will happen to our products
and prepare for it. When old age arrives, we must be
prepared to deal with it.

The purpose of this paper is to explain how an ab-
stract, mathematical product can age and then to re-
view some of the approaches to dealing with it.
2 The causes of software aging

There are two, quite distinct, types of software ag-
ing. The first is caused by the failure of the product’s
owners to modify it to meet changing needs; the sec-
ond is the result of the changes that are made. This
“one-two punch” can lead to rapid decline in the val-
ue of a software product.

0270-5257194 $3.00 Q 1994 IEEE
279

2.1 Lack of movement
Over the last three decade, our expectations about

software products has changed greatly. I can recall
the days when a programmer would “patch” a pro-
gram stored on paper tape by using glue and paper.
We were all willing to submit large decks of cards
and to wait hours or days for the job to compile and
run. When interactive programming first came in, we
were willing to use cryptic command languages. To-
day, everyone takes on-line access, “instant” re-
sponse, and menu-driven interfaces for granted. We
expect communications capabilities, mass on-line
storage, etc. The first software product that I built (in
1960) would do its job perfectly today (if I could find
a Bendix computer), but nobody would use it. That
software has aged even though nobody has touched it.
Although users in the early 60’s were enthusiastic
about the product, today’s users expect more. My old
software could, at best, be the kernel of a more con-
venient system on today’s market. Unless software is
frequently updated, it’s user’s will become dissatis-
fied and they will change to a new product as soon as
the benefits outweigh the costs of retraining and con-
verting. They will refer to that software as old and
outdated.
2.2 Ignorant surgery

Although it is essential to upgrade software to pre-
vent aging, changing software can cause a different
form of aging. The designer of a piece of software
usually had a simple concept in mind when writing
the program. If the program is large, understanding
that concept allows one to find those sections of the
program that must be altered when an update or cor-
rection is needed. Understanding that concept also
implies understanding the interfaces used within the
system and between the system and its environment.

Changes are made by people who do not under-
stand the original design concept almost always cause
the structure of the program to degrade. Under those
circumstances, changes will be inconsistent with the
original concept; in fact, they will invalidate the orig-
inal concept. Sometimes the damage is small, but of-
ten it is quite severe. After those changes, one must
know both the original design rules, and the newly in-
troduced exceptions to the rules, to understand the
product. After many such changes, the original de-
signers no longer understand the product. Those who
made the changes, never did. In other words, nobody
understands the modified product. Software that has
been repeatedly modified (maintained) in this way

becomes very expensive to update. Changes take
longer and are more likely to introduce new “bugs”.
Change induced aging is often exacerbated by the
fact that the maintainers feel that they do not have
time to update the documentation. The documenta-
tion becomes increasingly inaccurate thereby making
future changes even more difficult.
3 Kidney failure

A problem that is often confused with, but is dis-
tinct from, software aging, is the system slow down
caused by failure to release allocated memory. Files
may grow and require pruning. Sometimes a memory
allocation routine may not release all the space that
has been allocated. Slowly, swap and file space are
diminished and performance degrades. This problem
is often a congenital design failure and can strike at
any age; but it may also be the result of ignorant sur-
gery or exacerbated by changing usage patterns.
Nonetheless, it is more easily cured than the “aging”
that is the subject of this paper. A dialysis type proc-
ess may intervene and clean up the file system and
memory, improved routines may cause the cleanup to
occur rapidly and the software may be considered
completely “cured”.
4 The costs of software aging

The symptoms of software aging mirror those of
human aging: (1) owners of aging software find it in-
creasingly hard to keep up with the market and lose
customers to newer products, (2) aging software of-
ten degrades in its spacehime performance as a result
of a gradually deteriorating structure, (3) aging soft-
ware often becomes “buggy” because of errors intro-
duced when changes are made. Each of these results
in real costs to the owner.
4.1 Inability to keep up

As software ages, it grows bigger. This “weight
gain” is a result of the fact that the easiest way to add
a feature, is to add new code. Modifying existing
code to handle the new situations is often difficult be-
cause that code is neither well-understood nor well-
documented. As the size of a program increases,
sometimes by one or two orders of magnitude over a
period of several years, changes become more diffi-
cult in a variety of ways. First, there is more code to
change; a change that might have been made in one
or two parts of the original program, now requires al-
tering many sections of the code. Second, it is more
difficult to find the routines that must be changed. As
a result, the owners are unable to add new features
quickly enough. Customers may switch to a younger

280

product to get those features. The company experi-
ences a notable drop in revenue; when they bring out
a new version, it is of interest to a dwindling custom-
er base. If they do attempt to keep up with the market,
by increasing their work force, the increased costs of
the changes, and the delays, lead to further loss of
customers.
4.2 Reduced performance \

As the size of the program grows, it places more
demands on the computer memory, and there are
more delays as code must be swapped in from mass
storage. The program responds more slowly; custom-
ers must upgrade their computers to get acceptable
response. Performance also decreases because of
poor design. The software is no longer well under-
stood and changes may adversely affect performance.
A younger product, whose original design reflected
the need for recently introduced features will run fast-
er or use less memory.
4.3 Decreasing reliability

As the software is maintained, errors are intro-
duced. Even in the early years of the industry, observ-
ers were able to document situations in which each
error corrected introduced (on average) more than
one error. Each time an attempt was made to decrease
the failure rate of the systems, it got worse. Often the
only choice was to abandon the product or at least to
stop repairing bugs. I have been told of older software
products in which the list of known, but not yet re-
paired, bugs, exceeded 2000 entries.
5 Reducing the costs of software aging

Inexperienced programmers can often be recog-
nised by the elation that they show the first time that
they get correct results from a program. “I’m done; it
works!” is the shout of a new programmer who has
just had a successful first demonstration’. The experi-
enced programmer realises that this is just the begin-
ning. They know that any serious product requires
extensive testing, review and revision after the first
successful run. The work that is invested by responsi-
ble, professional, organisations after the first success-
ful run and before the first release is usually much
greater than that required to get the first successful
run. However, even experienced programmers focus
on that first release. Our experience with software ag-
ing tells us that we should be looking far beyond the
first release to the time when the product is old.

Students get this “rush” with the first error-free compila-
tion.

Too many papers at software engineering confer-
ences focus on the problems of getting to the first re-
lease. Too many papers focus on the management
issues, (e.g. configuration management and control).
Dealing with software aging requires more than “pa-
tient management”; it requires solid engineering. It is
the purpose of the remainder of this paper to consider
what actions we might take to reduce the costs asso-
ciated with Software Aging.
6 Preventive medicine

Since software aging is such a serious problem, the
first question we must ask is what we can do to delay
the decay and Gmit its effects.
6.1 Design for success

The first step in controlling software aging is ap-
plying the old slogan, “design for change”. Since the
early 70’s we have known how to design software for
change. The principle to be applied is known by vari-
ous names, e.g. “information hiding”, “abstraction”,
“separation of concerns”, “data hiding”, or most re-
cently, “object orientation”. To apply this principle
one begins by trying to characterise the changes that
are likely to occur over the “lifetime” of the product.
Since, we cannot predict the actual changes, the pre-
dictions will be about classes of changes, e.g. revised
expression representation, replacing of the terminal
with a new type, changes in the user-interface,
change to a new windowing system, etc. Since it is
impossible to make everything equally easy to
change, it is important to estimate the probabilities of
each type of change. Then, one organises the soft-
ware so that the items that are most likely to change
are “confined” to a small amount of code, so that if
those things do change, only a small amount of code
would be affected. In spite of the simplicity of this
principle, and in spite of its broad acceptance, I do
not see much software that is well designed from this
point of view. It is worthwhile to examine some of
the reasons for the industry’s failure to apply this
principle.

Man textbooks on software mention this tech-
nique’, but they cover it in a superficial way. They
say that one should hide, or abstract from “imple-
mentation details”, but they do not discuss, or illus-
trate, the process of estimating the probability of
change for various classes of changes. The princi-
ple is simple; applying it properly requires a lot of

It is so well-accepted, that textbooks often fail to point
out the places where the idea first appeared.

281

thought about the application and the environment.
The textbooks do not make that clear.
Many programmers are impatient with such consid-
erations; they are so eager to get the first version
working, or to meet some imminent deadline, that
they do not take the time to design for change. Man-
agement is so concerned with the next deadline (and
so eager to get to a higher position) that future
maintenance costs don’t have top priority.
Designs that result from a careful application of in-
formation hiding are quite different from the “natu-
ra l” designs that are the resul t of most
programmer’s intuitive work. The programmer’s in-
tuition is to think about steps in the data processing,
not likely changes. Even when told to associate
each module with a “secret”, something that is like-
ly to change that should be encapsulated, they use
“secrets” of the form, “how to”, and make each
module perform some step in the processing, often
violating the information hiding principle in the
process.
Designers tend to mimic other designs that they

have seen. They don’t see many good applications
of information hiding. One example of information
hiding design is [9]
Programmers tend to confuse design principles

with languages. For example, they believe that one
cannot apply “object-oriented” ideas without an
“object oriented” language. Even worse, they think
that one has applied the techniques, if one has used
such a language.
Many people who are doing software development,
do not have an education appropriate to the job.
Topics that are “old hat” to those who attend this
conference are unknown, or vague jargon, to many
who are writing software. Each industry has its own
software conferences and many programmers in
each industry work as if their problems were
unique.
Software Engineering researchers continue to

preach to converted, to write papers for each other,
and to ignore what is happening where the majority
software is written. They assume that “design for
change” is an old problem, not one that requires fur-
ther work. They are wrong!
Thus, although the principle of information hiding

was first enunciated in the early ~ O ’ S , (and illustrated
even earlier), it is rare to find a software product that
was properly designed from this point of view. The
code is often clever, efficient, and correct; it performs
rather amazing functions, but rarely is it designed to
be easily changed. The problem is not that nobody
knows how to do it, but that most programmers don’t

do it. I suspect that some programmers think that
their program will be so good that it won’t have to be
changed. This is foolish. The only programs that
don’t get changed are those that are so bad that no-
body wants to use them. Designing for change is de-
signing for success.
6.2 Keeping records - documentation

Even when the code is designed so that changes
can be carried out efficiently, the design principles
and design decisions are often not recorded in a form
that is useful to future maintainers. Documentation is
the aspect of software engineering most neglected by
both academic researchers and practitioners. It is
common to hear a programmer saying that the code is
it’s own documentation; even highly respected lan-
guage researchers take this position, arguing that if
you use their latest language, the structure will be ex-
plicit and obvious.

When documentation is written, it is usually poorly
organised, incomplete and imprecise. Often the cov-
erage is random; a programmer or manager decides
that a particular idea is clever and writes a memo
about it while other topics, equally important, are ig-
nored. In other situations, where documentation is a
contractual requirement, a technical writer, who does
not understand the system, is hired to write the docu-
mentation. The resulting documentation is ignored
by the maintenance programmers because it is not ac-
curate. Some projects keep two sets of books; there is
the official documentation, written as required for the
contract, and the real documentation, written infor-
mally when specific issues arise.

Documentation that seems clear and adequate to its
authors is often about as clear as mud to the program-
mer who must maintain the code 6 months or 6 years
later. Even when the information is present, the main-
tenance programmer doesn’t know where to look for
it. It is almost as common to find that the same topic
is covered twice, but that the statements in the docu-
mentation are inconsistent with each other and the
code.

Documentation is not an “attractive” research top-
ic. Last year, I suggested to the leader of an Esprit
project who was looking for a topic for a conference,
that he focus on documentation. His answer was that
it would not be interesting. I objected, saying that
there were many interesting aspects to this topic. His
response was that the problem was not that the dis-
cussion wouldn’t be interesting, the topic wouldn’t
sound interesting and would not attract an audience.

282

For the past five or six years my own research, and
that of many of my students and close colleagues, has
focused on the problems of documentation. We have
shown how, mathematical methods can be used to
provide clear, concise, and systematic documentation
of program design [3,4]. We have invented and illus-
trated new mathematical notation that is much more
suited to use in documentation, but no less formal
[5,6,7]. The reaction of academics and practitioners
to this work has been insight-provoking. Both sides
fail to recognise documentation as the subject of our
work. Academics keep pointing out that we are ne-
glecting “proof obligations”; industrial reviewers
classify our work as “verification” which they (often
correctly) consider too difficult and theoretical. Nei-
ther group can see documentation as an easier, and in
some sense more important, topic, than verification.
To them, documentation is that “blah blah” that you
have to write. In fact, unless we can solve the docu-
mentation problem, the verification work will be a
waste of time.

In talking to people developing commercial soft-
ware we find that documentation is neglected because
it won’t speed up the next release. Again, program-
mers and managers are so driven by the most immi-
nent deadline, that they cannot plan for the software’s
old age. If we recognise that software aging is inevi-
table and expensive, that the first or next release of
the program is not the end of it’s development, that
the long-term costs are going to exceed the short term
profit, we will start taking documentation more seri-

When we start taking documentation more serious-
ly, we ‘will see that just as in other kinds of engineer-
ing documentation, software documentation must be
based on mathematics. Each document will be a rep-
resentation of one or more mathematical relations.
The only practical way to record the information
needed in proper documentation will be to use for-
mally defined notation.
6.3 Second opinions - reviews

In engineering, as in medicine, the need for reviews
by other professionals is never questioned. In the de-
sign of a building, a ship, or an aircraft, there is al-
ways a series of increasingly precise design
documents and each is carefully reviewed by others.
Although the topic of design reviews is widely dis-
cussed by software engineering lecturers, it is quite
astounding too see how often commercial programs
are produced without adequate review. There are

ously.

many reasons for this:
Many programmers have no professional training
in software at all. Some are engineers from other
fields, some are “fallen scientists” who learned pro-
gramming incidentally while getting their educa-
tion. Some were mathematicians, and some came
from non-technical backgrounds. In many of those
areas, the concept of preparing and holding a de-
sign review is nonexistent.
Even among those that have Computer Science de-
grees have had an education that neglected such
professional concerns as the need for design docu-
mentation and reviews. The emphasis is on the
mathematics and science; professional discipline is
not a topic for a “liberal” education.
Most practitioners (and many researchers) do not

know how to provide readable precise documenta-
tion of a design, as distinct from an implementa-
tion. No precise description, other than the detailed
code, is available for review. Design reviews early
in a project, when they would do the most good, are
reduced to chat sessions because there are no de-
tailed design documents to discuss.
Much software is produced as a cottage industry,
where there are no people who could serve as qual-
ified reviewers and there is no funding to hire out-
side reviewers
Software is often produced under time pressure

that misleads the designers into thinking that they
have no time for proper reviews
Many programmers regard programming as an

“art” and resent the idea that anyone could or
should review the work that they have done. I have
known programmers to quite working because they
resented the fact that their work would be subject to
review.
For any organisation that intends to maintain its

software products over a period of years, reviews are
essential and must be taken more seriously than is
now usual. In particular, to ameliorate the problems
of software aging, every design should be reviewed
and approved by someone whose responsibilities are
for the long-term future of the product. Reviews by
people concerned with maintenance should be car-
ried out when the design is first proposed and long
before there is code. A discussion of how to review
design documents can be found in [2].
6.4 Why software aging is inevitable

Even if we take all reasonable preventive meas-
ures, and do so religiously, aging is inevitable. Our
ability to design for change depends on our ability to
predict the future. We can do so only approximately

283

and imperfectly. Over a period of years, we will make
changes that violate our original assumptions. Docu-
mentation, even if formal and precise, will never be
perfect. Reviews, will bring out issues that the de-
signers miss, but there are bound to be issues that the
reviewers miss as well. Preventive measures are
worthwhile but anyone who thinks that this will elim-
inate aging is living in a dream world.
7 Software geriatrics

Prevention is always the best medicine, but we still
have to deal with old software. This section outlines
several things that can be done to treat software aging
that has already occurred.
7.1 Stopping the deterioration

If software has been maintained for some time
without much concern for the issues raised here, a
marked deterioration will be observed. The first step,
should be to slow the progress of the deterioration.
This is done by introducing, or recreating, structure
whenever changes are made. The principles of design
mentioned earlier, can be used to guide change and
maintenance as well. If a design decision about the
system is changed, the new data structure or algo-
rithm can be hidden (encapsulated) in way that makes
any future changes of that aspect of the system easier.
Careful reviews must insure that each change is con-
sistent with the intent of the original designers, that
the original design concept is not violated by the new
changes.

Stopping the deterioration is, like many other
things in Software Engineering, much easier to say
than to do. Many companies have allowed cancerous
growth to go on unchecked in their software, for
years. When times are good, growth is rapid and there
is no obvious reason to be cautious. The result is that
a single project may exist in many versions, each with
subtly different structures and based on slightly dif-
ferent assumptions. When the period of rapid growth
is over, every change must be made many times and
the maintainers get confused by the profusion of al-
most alike versions. Someone has to do a serious
study of all of those versions and record the differenc-
es. Then a team will have to agree on the proper
structure and all versions will have to be forced into
that mould. In a time when things are not going well,
it is difficult to get enough staff to do the job properly.

New documents must be created and reviewed. The
code must then be checked to make sure that it has
been made consistent with these new documents.
Such a process might take several years and during

that time demands for changes and corrections will
continue to come in. Nipping the growth in the bud is
by far preferable. Retrenchment is always painful.
7.2 Retroactive documentation

A major step in slowing the aging of older soft-
ware, and often rejuvenating it, is to upgrade the
quality of the documentation. Often, documentation
is neglected by the maintenance programmers be-
cause of their haste to correct problems reported by
customers or to introduce features demanded by the
market. When they do document their work, it is of-
ten by means of a memo that is not integrated into the
previously existing documentation, but simply added
to it. If the software is really valuable, the resulting
unstructured documentation can, and should, be re-
placed by carefully structured documentation that has
been reviewed to be complete and correct. Often,
when such a project is suggested, programmers (who
are rarely enthusiastic about any form of documenta-
tion) scoff at the suggestion as impractical. Their in-
terests are short-term interests, and their work
satisfaction comes from running programs. Nonethe-
less, there are situations where it is in the owner’s
best interest to insist that the product be documented
in a form that can serve as a reference for future
maintenance programmers.

A pleasant side-effect of documentation efforts is
often, the improvement of the software. The formal
documentation that we recommend requires a de-
tailed and systematic examination of the code and of-
ten reveals bugs, duplicate or almost alike functions,
and ways to improve performance. In a recent exper-
iment, I asked an undergraduate student to produce
documentation for a piece of software that was no
longer functional. The author had left our country.
Although the student was not asked to find bug, the
systematic analysis necessary to create the formal
documentation forced him to look at each routine
carefully. He suggested some changes and the soft-
ware is now functional - and well documented for fu-
ture changes.
7.3 Retroactive incremental modularisation

Although all software experts now admit the im-
portance of modularisation, and most large programs
do have some units that are considered modules, a
good understanding of the principles of modularisa-
tion is rarely reflected in the code. Modularisation re-
quires more than simply identifying subroutines, or
small groups of procedures and calling them mod-
ules. Each module must comprise all the programs

204

that “know” (are based on) a particular design deci-
sion that is likely to change. Recognising things that
are likely to change requires experience, and success-
fully hiding or confining knowledge of a design deci-
sion to one module requires skills and understanding
that are rare. Still programmers who understand in-
formation hiding and abstraction can usually find
code segments that should be modules and collect
them into units. A consultant, who views the software
with fresh eyes, can often show how the job is done.
Doing so, greatly eases the future maintenance of the
code. Often of these improvements can be made at lit-
tle cost as a side-effect of changes that have to be
made anyway.
7.4 Amputation

Occasionally, a section of code has been modified
so often, and so thoughtlessly, that it is not worth sav-
ing. Large sections can be discarded and replaced by
artificial “stumps” which perform the function in
some other way. Amputation is always a difficult and
controversial decision. Those who have created the
old code are not willing to admit that it is not worth
keeping. Again, consultants are often helpful, if they
can be fully informed. They don’t have the emotional
attachment to the code that the authors might have.
7.5 Major surgery - restructuring

When a large and important family of products gets
out of control, a major effort to restructure it is appro-
priate. The first step must be to reduce the size of the
program family. One must examine the various ver-
sions to determine why and how they differ. If one
can introduce modules that hide those differences,
agree on (and document) standard interfaces for those
modules, and then make those changes in the various
versions, one can collapse the versions into a single
system that differs only in a few modules. Replacing
the old versions with the restructured ones, allows fu-
ture changes to the shared code to be shared by many
versions. In many situations, the separate versions
can be combined into one by introducing “switches”
that are checked at run-time to determine which ver-
sion of behaviour is wanted. This introduces a small
amount of run-time inefficiency but greatly reduces
the size of the maintenance staff. I have seen a few
organisations that were able to offer what appeared to
be a broad family of products by distributing a single
piece of code and setting hidden switches to create
systems that appear to be quite different. The mainte-
nance costs of these organisations are much lower
than they would be if they had separate versions. Un-

fortunately, some of their customers found the
switches and were able to enjoy the benefits of fea-
tures that they had not purchased. In spite of this, I
suspect that the software manufacturer was ahead be-
cause of reduced maintenance costs.
8 Planningahead

If we want to prevent, or at least slow down, soft-
ware aging, we have to recognise it as a problem and
plan for it. The earlier we plan for old age, the more
we can do.
8.1 A new “Life Style’’

It’s time to stop acting as if, “getting it to run” was
the only thing that matters. It is obviously important
to get a product to the customer quickly, but we can-
not continue to act as if there were no tomorrow. We
must not let today’s pressures result in a crippled
product (and company) next year. We cannot do good
work under stress, especially the constant stress of a
25 year crisis. The industry itself must take steps to
slow down the rapid pace of development. This can
be done by imposing standards on structure and doc-
umentation, making sure that products that are pro-
duced using “short cuts” do not carry the industry
“seal of quality”.
8.2 Planning for change

Designs have to be documented, and carefully re-
viewed, before coding begins. The programs have to
be documented and reviewed. Changes have to be
documented and reviewed. A thorough analysis of
future changes must be a part of every product design
and maintenance action. Organisations that are big-
ger than a few people should have a professional, or a
department, devoted to reviewing designs for
changeability. They should have the power to veto
changes that will get things done quicker now but at
a great cost later.
8.3 If it’s not documented, it’s not done

If a product is not documented as it is designed, us-
ing documentation as a design medium [l], we will
save a little today, but pay far more in the future. It is
far harder to re-create the design documentation than
to create it as we go along. Documentation that has
been created after the design is done, and the product
is shipped, is usually not very accurate. Further, such
documentation was not available when (and if) the
design was reviewed before coding. As a result, even
if the documentation is as good as it would have
been, it has cost more and been worth less.

285

8.4 Retirement savings plans
In other areas of engineering, product obsolescence

is recognised and included in design and marketing
plans. The new car you buy today, is “old hat” to the
engineers who are already working on future models.
The car is guaranteed only for a (very) limited time
and spare parts are also required to be available only
for prescribed periods. When we buy a car we know
that it will age and will eventually have to be re-
placed. If we are wise, we begin to plan for that re-
placement both financially and by reading about new
developments. The manufacturers show similar fore-
sight. It is only in the software industry where people
work as if their product will “live” forever. Every de-
signer and purchaser of software should be planning
for the day when the product must be replaced. A part
of this planning is financial planning, making sure
that when the time comes to install or develop a new
product, the funds and the people are there.
9 Barriers to progress

If we are going to ameliorate the problem of aging
software, we are going to have to make some deep
changes in our profession. There are four basic barri-
ers to progress in Software Engineering. These are at-
titudes and assumptions that make it impossible for
research to make a difference.
9.1 A 25 year crisis?

I first heard the term “software crisis” 25 years ago
and have heard it used to describe a current problem
every year since then. This is clearly nonsense. A cri-
sis is a sudden, short-term serious emergency. The so-
called “software crisis” is certainly serious, but it is
neither sudden nor short-term. It cannot be treated as
if it were a sudden emergency. It needs careful long-
term therapy. “Quick and easy” solutions have never
worked and will not work in the future. The phrase
“software crisis” helps in dealing with certain fund-
ing agencies, but it prevents the deep analysis needed
to cure a chronic illness. It leads to short-term think-
ing and software that ages quickly.
9.2 “Our industry is different.”

Software is used in almost every industry, e.g. air-
craft, military, automotive, nuclear power, and tele-
communications Each of these industries developed
as an intellectual community before they became de-
pendent upon software. Each has its own professional
organisations, trade organisations, technical societies
and technical journals. As a result, we find that many
of these industries are attacking their software prob-

lems without being aware of the efforts in other in-
dustries. Each industry has developed its own
vocabulary and documents describing the way that
software should be built. Some have developed their
own specification notations and diagramming con-
ventions. There is very little cross-communication.
Nuclear Industry engineers discuss their software
problems at nuclear industry meetings, while tele-
communications engineers discuss very similar prob-
lems at entirely different meetings. To reach its
intended audience, a paper on software engineering
will have to be published in many different places.
Nobody wants to do that (but promotion committees
reward it).

This intellectual isolation is inappropriate and cost-
ly. It is inappropriate because the problems are very
similar. Sometimes the cost structures that affect so-
lutions are different, but the technical issues are very
much the same. It is costly because the isolation of-
ten results in people re-inventing wheels, and even
more often in their re-inventing very bumpy and
structurally weak wheels. For example, the telecom-
munications industry and those interested in manu-
facturing systems, rarely communicate but their
communication protocol problems have many simi-
larities. One observes that the people working in the
two industries often do not realise that they have the
same problems and repeat each other’s mistakes.
Even the separation between safety-critical and non
safety-critical software (which might seem to make
sense) is unfortunate because ideas that work well in
one situation are often applicable in the others.

We need to build a professional identity that ex-
tends to people in all industries. At the moment we
reach some people in all industries but we don’t seem
to be reaching the typical person in those industries.
9.3 Where are the professionals?

The partitioning of people and industries with soft-
ware problems is a symptom of a different problem.
Although we have lots of people who are paid to
write software, we don’t have software engineers in
the sense that we have aeronautical, electrical, or civ-
il engineers. The latter groups are primarily people
who have received a professional education in the
field in which they work, belong to professional soci-
eties in that field, and are expected to keep up with
that field. In contrast, we find that software in the nu-
clear field is written by nuclear engineers who have
learned a programming language, software in the tel-
ecommunications field is written by communications

286

engineers and electrical engineers, software in the au-
tomated manufacturing field is written by mechanical
engineers, etc. Programming engineers in those in-
dustries do not think of themselves as a profession in
the sense that aeronautical or nuclear engineers do.
Moreover, they have not received a formal education
in the field in which they are now working. We find
that engineers who write programs know far to little
about computing science, but computer science grad-
uates know far too little about engineering procedures
and disciplines. I often hear, “anybody can write a
program” and it’s true, but programs written in an un-
professional way will age much more rapidly than
programs written by engineers who have received an
education in the mathematics and techniques that are
important to program design.[8]
9.4 Talking to ourselves

Researchers have to start rethinking their audience.
All too often, we are writing papers to impress our
colleagues, other researchers. Even worse, if we try to
write a paper for the practitioner, the referees com-
plain if we include any basic definitions or problems.
We end up writing papers that are read by our fellow
researchers but not many others. We also spend too
little time finding out what the practitioners know,
think, and need. In Faculties of Engineering, profes-
sional practice is recognised as essential to good
teaching and research. In many Science faculties, it is
viewed simply as a way to make some extra money.
This is one of many reason why I believe that Com-
puter Science Departments would function better if
they were always part of an Engineering Faculty.
10 Conclusions for our profession

(1) We cannot assume that the old stuff is known and
didn’t work. If it didn’t work, we have to find out why.
Often it is because it wasn’t tried.

(2) We cannot assume that the old stuff will work.
Sometimes widely held beliefs are wrong.

(3) We cannot ignore the splinter software
engineering groups. Together they outnumber the
people who will read our papers or come to our
conferences.

(4) Model products are a must. If we cannot illustrate
a principle with a real product, there may well be
something wrong with the principle, Even if the
principle is right, without real models, the technology
won’t transfer. Practitioners imitate what they see in
other products. If we want our ideas to catch on, we
have to put them into products. There is a legitimate,
honourable and important place for researchers who

don’t invent new ideas but, instead, apply,
demonstrate, and evaluate old ones.

(5) We need to make the phrase “software engineer”
mean something. Until we have professional
standards, reasonably standardised educational
requirements, and a professional identity, we have no
right to use the phrase, “Software Engineering”.
11 References
[l] HESTER, S.D., PARNAS, D.L., UTTER, D.F.,
“Using Documentation as a Software Design
Medium”, Bell System Technical Journal, 60, 8 ,
October 1981, pp. 1941-1977.
[2] PARNAS, D.L., WEISS, D.M., “Active Design
Reviews: Principles and Practices”, Proceedings of
the 8th International Conference on Software
Engineering, London, August 1985. Also published
in Joumal of Systems and Sofrware, December 1987.
[31 VAN SCHOUWEN, A. J . , PARNAS, D.L.,
MADEY, J ., “Documentation of Requirements for
Computer Systems”, presented at RE ‘93 IEEE
Intern a ti o n a 1 Symposium o n Requirements
Engineering, San Diego, CA, 4 - 6 January, 1993.
[4] PARNAS, D.L., MADEY, J., “Functional
Documentation for Computer Systems Engineering
(Version 2)”, CRL Report 237, CRL-TRIO McMaster
University, September 1991, 14 pgs. (to be published
in Science of Computer Programming)
[5] PARNAS, D.L., “Tabular Representation of
Relations”, CRL Report 260, CRL. McMaster
University, October 1992, 17 pgs.
[6] JANICKI, R., “Towards a Formal Semantics of
Tables”, CRL Report 264. CRL McMaster University,
September 1993, 18 pgs.
[7] ZUCKER, J.I., “Normal and Inverted Function
Tables”, CRL Report 265,CRL, McMaster
University, December 1993, 16 pgs.
[8] PARNAS, D.L., “Education for Computing
Professionals”, IEEE Computer, vol. 23, no. 1,

[9] PARNAS, D.L., CLEMENTS, P.C., WEISS,
D.M., “The Modular Structure of Complex Systems”,
IEEE Transactions on Sofrware Engineering, March
1985, Vol. SE-11 No. 3, pp. 259-266. Also published
in Proceedings of 7th International Conference on
Software Engineering, March 1984, pp. 408-417.

January 1990, pp. 17-22.

287

