
Abstract

The process of software reverse engineering commonly 

uses an extractor, which parses source code and extracts 

facts about the code. The level of detail in these facts 

varies from extractor to extractor.  This paper describes 

four levels of increasingly detailed completeness of these 

facts: (semantic completeness, compiler completeness, 

syntax completeness and source completeness) and 

introduces the concept of relative completeness of 

extractors. Validating that an extractor correctly 

produces facts at a given level of completeness is in 

general very challenging.  This paper gives a method for 

validating the semantic completeness of an extractor, and 

describes the application of this method to CPPX, an 

extractor for C or C++ based on GCC. 

1. Introduction 

Software reverse engineering extracts and presents 

information about existing software systems.  A key part 

of this activity is automated by fact extractors which input 

source code and produce facts about the code.  These facts 

can be thought of as rows in a relational data base table, or 

as edges in a graph.  For example, the fact (call, P, Q),

could mean that function P calls function Q.

The authors have been involved in developing of a 

number of fact extractors, most recently CPPX (C++ 

Extractor) [8].  This extractor is based on the GCC open 

source C++ compiler [13]. The GCC front end transforms 

the source program into a corresponding Abstract Syntax 

Graph (ASG); see Figure 1. 

The ASG is an abstraction the program's syntax tree 

decorated with edges that correspond to resolution of 

references to declarations and with attributes representing  

information such as line numbers.   

Ordinarily, the back end of GCC proceeds to translate

the ASG to assembly language.  CPPX operates by 

replacing GCC's back end by a graph transformer, called 

cppx (written in lower case to emphasize that it is only  

part of the CPPX fact extractor).  The cppx transformation 

produces another version of the ASG, which satisfies the 

Datrix schema [5] for representing facts about C or C++ 

programs.  The Datrix schema is designed to be 

convenient for reverse engineering purposes. 
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Figure 1.  CPPX fact extractor. CPPX consists of the 
GCC front end together with the CPPX graph transformer, 
shown here as boxes and arrows drawn with solid lines 

There has been considerable research on validating fact 

extractors [18] [4] [19] [6].  In this paper we record the 

approach we used toward validating the CPPX extractor.  

More generally, we give a method for validating that an 

extractor is semantically complete, that is, that its 

extracted facts contain enough information to recover a 

program with the same behavior as the original source 

program. 

The rest of this paper is organized as follows.  Section 2 

provides details about compiler phases and ASGs.  

Section 3 provides background information on factbases, 

schemas and exchange formats.  Section 4 defines four 

increasingly detailed levels of facts that an extractor may 

produce and introduces the concept of relative 
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completenss of extractors.  Section 5 gives a method for 

validating the semantic completeness of a fact extractor 

and explains how we applied this method to CPPX.  

Section 6 discusses the cppx graph transformer.  Section 7 

lists problems in CPPX that were detected as a result of 

applying our validation method.  Finally, section 8 

summarizes the research and proposes future work.  

2. Compiler Phases and ASGs 

In a typical compiler [1][3], the source code is initially 

preprocessed, parsed, and subjected to semantic analysis. 

In the case of GCC, these steps are carried out by its front 

end; see Figure 1.  Following these initial steps, the 

assembly or machine code is generated, optimized and 

emitted. These final steps are carried out by the compiler's 

back end. 

The result of parsing is a parse tree. Lexical details of 

the source, such as spacing, comments, preprocessor 

directives, do not appear in the tree.  This tree is then 

simplified and made more convenient for further 

processing.  The simplified tree is called the Abstract 

Syntax Tree (AST).

The semantic analysis phase of compilation decorates 

the AST by adding semantic information such as types of 

identifiers, declaration locations and overload resolution. 

The decorated AST is called the Abstract Semantic Graph 

(ASG). After the insertion of semantic information, the 

syntactic structure may be simplified further:  

The nodes of the ASG represent source program 

entities including types, classes, methods, statements, 

expressions, and so on down to the lowest level of 

constants and variable references. The edges represent 

relationships between them. There are two kinds of edges 

in the ASG: tree edges and semantic edges. 

Tree edges give the tree structure of the ASG.  They 

represent containment in the source syntax. For example, 

a declaration is contained by its scope, a declared 

identifier by its declaration, a variable reference by an 

expression involving it, and a conditional expression by 

the if statement which it controls. 

Semantic edges (non-tree edges) represent semantic 

connections, such as typing and the resolution of scoped 

names.  For example, semantic edges connect the 

operands of an expression to their declarations and an 

instance declaration to its class type. 

3. Schemas and Interchange Formats 

An extractor such as CPPX can be used for a variety of 

reverse engineering purposes, so its output (the Datrix 

ASG factbase) should be available in a well documented, 

accessible format.  The format should determine a 

concrete syntax, so the ASG can be conveniently input by 

further reverse engineering tools such as visualizers and 

analyzers.

A number of exchange formats have been proposed for 

exchange of reverse engineering factbases, including GXL 

[20] (based on XML), TA [14], RSF [21], and Grax [10].  

CPPX generates TA by default, with an option to emit 

GXL.

Besides determining a concrete syntax, exchange 

formats such as TA and GXL allow the user to specify a 

schema or data model.  The schema constrains the 

relationships between facts in the factbase and is used to 

give an interpretation of those facts.  For example, the 

schema may constrain Call edges to connect only 

Function nodes, and its interpretation may indicate that 

each call in the source code is to have a corresponding 

Call edge in the factbase.  The key benefit of supporting 

schemas, and not just a fixed exchanged format, is that 

this allows the exchange format to be broadly used, across 

a set of applications.  The user of the format creates a 

special schema to handle the data of interest, such as the 

data generated by CPPX.   

Examples of fact exchange schemas include the Datrix 

schema [5], the Columbus schema [11] and the Dagstuhl 

Middle-Level Model [17].  CPPX uses the Datrix schema.  

(Technically speaking, CPPX uses a slightly modified 

version of the Datrix schema.  To simplify the 

presentation in this paper, we will refer to these both as 

simply the "Datrix schema".) 

4. Completeness of Fact Extractors 

An extractor is analogous to a compiler in that it inputs 

source code and translates it to data in a very different 

form.  In the case of a compiler, the target data is 

assembly or machine language, for use in linking and 

execution.  In the case of an extractor, the target data is 

facts about the source, for use in reverse engineering.   

The extracted factbase may include only high level 

information, such as interactions between global entities 

such as functions and classes, or may also contain detailed 

information down to the level of statements and 

expressions. 
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Table 1. Four levels of completeness for a fact 
extractor

Level Question Definition

1. Source 

complete 

Are original and 

recovered source 

programs p0 and p1

identical, byte for byte, 

including comments and 

spacing? 

p1 = R(g0)

2. Syntax 

complete 

Are original and 

recovered syntax trees t0

and t1 identical? 

t0 = FE(p0)

t1 = FE(p1)

3. Compiler 

complete 

Are original and 

recovered assembly code 

a0 and a1 identical? 

a0 = BE(t0)

a1 = BE(t1)

4.

Semantically 

complete 

Are original and 

recovered behaviors s0

and s1 equivalent? 

s0=Sem(p0)

s1=Sem(p1)

4.1.  Four Levels of Completeness 

It is useful to characterize the extracted factbase in 

terms of how complete it is.  At the most inclusive 

extreme, the factbase can be source complete, meaning 

that it is possible to recover the exact source program, 

byte for byte, including comments and white space, from 

the factbase.  Most extractors including CPPX are not 

source complete, because information such as white space 

is not usually needed and would bloat the factbase with 

unwanted detail.   

A fact extractor E inputs the original source program p0

and produces factbase g0, i.e., g0 = E(p0); see Table 1.  In 

this figure, FE and BE are the Front End and Back End of 

a compiler.  Sem maps a program to its semantics 

In Table 1 we define four levels of completeness for an 

extractor.  These levels are a generalization of source 

completeness as defined by Dean et al [8].  At each level, 

completeness is defined by whether the extracted factbase 

retains enough information to answer a certain question.  

Figure 2 illustrates how the questions in levels 1 to 3 

might be addressed by means of testing. 

4.2. Hierarchy of Completeness 

From top to bottom in Table 1, or from left to right in 

Figure 2, completeness becomes weaker, i.e., the levels 

form a completeness hierarchy in which less information 

needs to be retained in the factbase as the level number  
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Figure 2. Validating three kinds of 
completeness

increases.

If an extractor is source complete, it is also syntax 

complete, because the extracted factbase g0 can be 

transformed back to the original source program, from 

which the original syntax tree can be derived.  By a 

similar argument, source completeness also implies 

compiler completeness and semantic completeness.   

Syntax completeness implies both compiler 

completeness and semantic completeness because the 

syntax tree incorporates all the information about a 

program that is needed for code generation.  Assuming the 

compiler is correct, compiler completeness implies 

semantic completeness because if original source and the 

recovered source have identical generated assembly 

language then they must have the same semantics. 

We have left the definition of syntax completeness 

somewhat ambiguous, allowing it to be based on either the 

context free parse tree or on the ASG, whichever is most 

convenient for a given purpose. 

4.3.  Semantic Completeness 

The lowest level in Table 1 is semantic completeness, 

which retains information about program behavior.  This 

level is particularly interesting because this information is 

needed by many reverse engineering tasks.  This is the 

level of completeness that CPPX (supposedly) attains.   

In level 4 of Table 1, we have assumed there is a 

semantics function Sem, which maps a source program to 

a representation of its behavior. Unfortunately, for 

production languages such as C and C++, such a function 
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has not been formally defined.  Furthermore, the equality 

of semantics is undecidable: In general we can’t check if 

two programs p0 and p1 have the same behavior.  Since 

semantic completeness asks whether p0 and p1 are 

semantically equivalent, it seems that determining if an 

extractor is semantically complete must be quite a 

challenge!  We take up that challenge in the last half of 

this paper. 

Many extractors do not extract enough information to 

satisfy any of the levels in Table 1.  For example, the CFX 

extractor [12] only extracts information at the level of 

functions and global variables along with the interactions 

among them.  This level is sufficient for certain reverse 

engineering analyses such as recovery of architecture, but 

is not sufficient for analysis involving function bodies.  

(We might call this “architecture complete” if we assume 

that architectural design recovery is based only on 

functions and global variables.) 

CPPX’s goal was to retain as much useful information 

as possible from the GCC ASG, and more information 

than is retained by most existing fact extractors. As a 

result, we decided to try to make CPPX to semantically 

complete. 

4.4.  Relative Completeness 

While the four kinds of completeness we have 

described are important, they are not the only possible 

kinds of extractor completeness.  Consider the possibility 

that a use-def graph [2] is needed to detect dead code.  We 

define an extractor to be use-def complete if its created 

factbase contains enough information to produce a use-def 

graph.

More generally, we will now introduce the formal 

concept of relative completeness among translators and 

extractors, as follows.  Suppose a source program p is 

translated by transformation T to produce T(p).  For 

example, T might be the front end FE of a compiler or 

might be an extractor for use-def graphs.  Program p is 

also transformed by extractor E to produce information 

E(p).  We define that E is at least as complete as T if the 

information produced by E can be further processed to 

create the information created by T. (See Figure 3.)  

Formally, we define this as follows: 

Definition 1.   If there exists a function F such that for 

all p  

F(E(p)) = T(p) 

then we say E is at least as complete as T.  We write this 

as:

   E c T 

See Figure 3 for illustration of T, E and F. 

Although Definition 1 is intuitively appealing, in actual 

practice, as illustrated by Figure 2, we used the following 

definition involving a recovery transformation R: 

Definition 2. If there exists a function R such that for 

all p   

T(R(E(p))) = T(p) 

then we say E is at least as complete as T. We write this 

as:

   E c T 

This second definition states that E is more complete 

than T if E’s output E(p) can be recovered back to R(E(p)) 

which T processes to output equivalent to T(p).  

Fortunately, the two definitions are equivalent, as we will 

now show. 

Proposition.  Definitions 1 and 2 are equivalent. 

We will now prove this proposition. It is obvious that 

if R exists, F also exists, because F can be defined in 

terms of R as  

F(e) = T(R(e)).

Source

Program p

Factbase

e

Transform

Output

t

Transform

T

Extractor
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Recovery

Transform

R

Forward

Transform
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Figure 3. Relative completeness of E and T

Now consider the converse: suppose F exists such that 

F(E(p)) = T(p). We show that R exists such that T(R(E(p)) 

= T(p). Suppose T1(t) is a left inverse of T, that is, 

T1(T(p)) = p. Then let R (e) = T1(F(e)), and we have 

T(R(E(p)) = T(T1(F(E(p)) = T(T1(T(p)) = T(p) as 

required. Such T1 exists since it only needs to be defined 

on the range of T. End of proof.

Aside.  Note that if F, E, and T are programs, then R 

can also be a program: that is, R is computable.  Given an 

extraction e, it is sufficient (for R) to generate programs p 

in the source language and test them successively until 

one be found for which T(p) = e. However, this is not very 

efficient! In practice R examines e, which is a data 
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structure, and constructs p from the information therein.

Although we have explained the concept of relative 

completeness in terms of extractors and translators, this 

concept is purely mathematical, and can be applied to any 

functions. The relative completeness operator c forms a 

lattice. Its top element is ID (the identity function): 

 T  ID c T

which means that no transform can preserve more 

information than does the identity function.  Its least 

elements are any constant function K: 

 T  T c K

which means that translating the input program to a 

constant, such as the null string, loses all information 

about the input. 

 The four hierarchical levels of completeness (source, 

syntax, compiler and semantic completeness) can be 

defined in terms of relative completeness.  For example, 

extractor E is compiler complete for compiler C if E c C.  

E is ASG complete for front end FE if E c FE.  E is 

source complete for compiler C if E c ID, which means 

that the facts extracted by E can be used to reconstruct the 

source program.   

 With this discussion of completeness behind us, we are 

ready to explain how we validated CPPX’s semantic 

completeness. 

5. Validating CPPX's Semantic 

Completeness

This section describes the method we used to validate 

the semantic completeness of CPPX.  Perhaps the most 

obvious approach to validate CPPX is to run it against a 

large test suite of source programs, and to check that the 

extracted factbase for each test is correct.  This approach 

would be very expensive, as it requires extensive manual 

work to do the checking or to create putatively correct 

factbases for comparison to CPPX generated factbases.  

As we will explain, our approach to validation of CPPX 

uses a test suite of programs, but avoids this manual step.  

The structure of CPPX was introduced using Figure 1. 

(Recall that CPPX consists of the front end of GCC 

together with the cppx graph transformation.) 

Figure 4 expands Figure 1 by adding a transformation 

called RCCPX (Reverse CPPX), which recovers a source 

program p1 from CPPX's extracted ASG g0.  The figure 

shows recovered source p1 being compiled by GCC's front 

end and back end to produce assembly code a1.

If all phases in the diagram are working correctly and 

CPPX is compiler complete, then the assembly language 

a0 from any original source p0 will be the same as its 

recovered assembly language a1 from recovered source p1.

As is explained below, our validation method for CPPX 

works by checking that a0 and a1 are identical for a suite 

of test source programs. 

5.1.  Why are Assembly Codes a0 and a1 Identical? 

Suppose we run a source program p0 through the phases 

shown in Figure 4.  If we find that a0 and a1 identical, what 

can we conclude?  It is tempting to conclude that this 

implies that cppx is semantics complete.  However, this 

might not be the case.  If GCC's back end is severely 

buggy and acts as a constant function K, producing null 

output for all input, then a0 and a1 will always be identical, 

regardless of the actions of CPPX.  Since GCC is widely 

used in production, it is clear that its back end is not 

severely buggy.  In fact, we can safely assume that its 

back end and front end together reliably generate correct 

assembly output for most input source programs.   

As we will explain below, the recovery transformation 

RCPPX is written to be simple and easy to make correct, 

so we can expect that it is reasonably reliable.  So, we can 

conclude that if there is a failure in one of the phases 

shown in Figure 4, the failure will probably occur in the 

least reliable phase, namely, in the cppx transformation 

phase.

Even if CPPX is semantically complete, it would be 

wrong to expect a0 and a1 to be identical.  After all, GCC 

is an optimizing compiler, and the smallest change in its 

input, as p0 varies to p1, may produce a change from a0 to 

a1 while maintaining the same semantics.  So, it may come 

as a surprise to learn that when we run test source 

programs though the configuration in Figure 4, a0 and a1

turn out to be identical (ignoring the cases when we 

encounter a bug in CPPX).  We will now answer the 

question: Why are a0 and a1 identical? 

Although GCC's back end is extremely complex, it is 

deterministic, i.e., for the same input it always generates 

the same output assembly code.  So, if the GCC ASGs t0

and t1, for the top and bottom lines in Figure 2, are the 

same, then a0 and a1 will be identical.  So the question 

becomes: Can we expect the GCC ASGs to be the same 

for source programs p0 and p1?

To our mild disappointment, we discovered that GCC's 

front end does some low level program transformations.   
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For example, it rewrites the integer comparison j >= 2 into 

j > 1.  Because of this, one might conclude that it is 

unlikely that the two GCC ASGs  t0 and t1 can be 

identical.  It turns out that this conclusion is not warranted 

for the following reason.

Apparently, the purpose of these rewrites is to produce 

a standard or canonical form for a few special constructs, 

and that these rewrites are idempotent, i.e., doing them a 

second time has no effect.  If we denote this rewriting as 

function f, we can expect or hope that, f(p0) = f(p1).  What 

we observed was that, with cppx working properly, the 

two ASGs were effectively the same, i.e., they were 

treated the same by the back end. The idempotent property 

of the GCC front end together with the deterministic 

nature of the GCC back end yields the overall property 

that, when cppx is operating correctly, a0 and a1 are 

identical.

After our initial validation of CPPX was largely 

finished, we ran tests to see if ASGs t0 and t1 were the 

same.  We found that they were very similar but not 

identical. They differed in their information about file and 

line location.  They also differed due to renaming of local 

variables, as described below. These differences do not 

effect the generated code.  Probably they could be 

eliminated by deleting file and line information and by 

optionally disabling the renaming of local variables, but 

we have not tried this. 

In short, CPPX is almost ASG-complete, but our 

method of validation only shows the technically weaker 

property of compiler completeness.  Compiler 

completeness seems to be more “surprising” and 

satisfying as its definition doesn’t rely on the internal 

details of the compiler. 

5.2.  Suite of Test Programs 

In our validation of CPPX, we used a test suite of C and 

C++ programs derived from two sources.  The first part of 

this suite consists of a set of small programs that were 

designed to show how source programs are represented 

when using the Datrix schema.  The second part consists 

of the suite of C and C++ programs used to test the GCC 

compiler.  Combined, these two parts provide an initial 

reasonable coverage of the features of C and C++.  (Note 

that we have thus far concentrated on validating CPPX on 

C rather than on C++ input.) 

5.3.  The Resolution Problem 

As we have explained, CPPX generates an ASG in 

which tree edges represent the containment structure and 

semantic edges give connections in the tree.  One key use 

of semantic connections to represent references to 

declarations.  For example, in the following program, 

there is a reference from the final x on line 4 to the local 

declaration of x (line 3), not to the global declaration of x 

(line 1). 

1 int x;  
2 int f() {  
3  int x;  
4  x++;  
5 }  

In the corresponding ASG, there is an edge from the 

node for the final x to the node for the declaration of the 

local x and not to the global declaration.  This edge is 

redundant in the sense that the scope rules of the 

programming language imply which declaration the final 

x is referencing.  Despite this redundancy, such edges are 

important because they allow the resolution problem (the 

sometimes difficult problem of resolving appropriate 

references) to be reliably solved once, in the extractor.  

Indeed, one of the reasons CPPX is based on GCC is to 

take advantage of the fact that GCC's ASG provides a 

reliable solution to this problem. 

Now consider the possibility that CPPX might 

incorrectly solve the resolution problem, for example, by 

generating the reference edge from the final x to the global 

x instead of to the local x.  Unfortunately, this error would 

not be detected by our validation method for CPPX, 

because in the recovered source program p1, there is no 
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record of this edge and hence no evidence of the error.  

Although CPPX creates this edge, RCPPX deletes it when 

recovering the source program. 

We devised the following approach to allow our 

validation method to check that resolution edges in the 

factbase are correct: local (non-external) identifiers are 

systematically renamed to be unique, by suffixing 

additional characters.  For the above example, the 

recovered program p1 would have this form: 

1 int x;  
2 int f() {  
3  int x_2;  
4  x_2++;  
5 }  

This renaming is done in way that avoids clashing with 

any global identifiers which might have a similar form.  If 

the global had been called ‘x_2’ then this would of course 

not be chosen as the new name of the local. 

With this suffixing convention, if CPPX generates 

incorrect reference edges, the resulting semantic errors 

will be reflected in the recovered code.  As a result, our 

validation method effectively checks that reference edges 

are correct, and that the CPPX has correctly solved the 

resolution problem. 

6. RCPPX: Recovering Source from Facts 

As can be seen in Figure 4, to use our validation 

method, we need a recovery transformation, namely we 

need RCPPX.  RCPPX inputs a Datrix ASG in the TA 

exchange format and outputs the equivalent C/C++ source 

program. TA is a relational notation, whose underlying 

data model is much like a Relational Data Base.  In TA, 

there is a set of triples, recording the source, target and 

type of each edge in a graph. In this case, the graph is the 

Datrix ASG.  As well, there are triples that represent 

attributes.  In TA, this information is encoded as an ASCII 

stream, stored in a flat file. 

The following is a tiny C compilation unit, which will 

serve as an example: 

/* A tiny program */ 
int x; 
void glup (int y) { 
 x = y + 1; 

}

The CPPX extractor translates this program to TA 

notation (simplified here for presentation purposes) as 

follows: 

FACT TUPLE : 

$INSTANCE @0 cFunction 

cRefersTo @2 @3 
$INSTANCE @2 cNameRef 
$INSTANCE @3 cObject 
$INSTANCE @4 cFormalObject 
$INSTANCE @5 cBlock 
$INSTANCE @7 cBuiltInType 
cRefersTo @9 @4 
$INSTANCE @9 cNameRef 
$INSTANCE @10 cBuiltInType 
contain @40 @2 
$INSTANCE @15 cBuiltInType 
cInstance @3 @10 
contain @40 @55 
contain @55 @9 
contain @55 @66 
contain @0 @5 
cInstance @0 @7 
cInstance @4 @10 
contain @0 @4 
cInstance @66 @10 
contain @5 @40 
$INSTANCE @40 cOperator 
$INSTANCE @55 cOperator 
$INSTANCE @66 cLiteral 
contain @577 @3 
contain @577 @0 
$INSTANCE @577 cScopeCompil 

FACT ATTRIBUTE :

@0 { name = glup } 
@2 { name = x } 
@3 { name = x } 
@4 { name = y } 
@7 { name = void } 
@9 { name = y } 
@10 { name = int } 
@40 { op = asgn-eq } 
@55 { op = bplus } 
@66 { value = 1 }

This TA represents a graph, which is diagrammed in 

Figure 5.  By comparing the source program with its 

image in TA (or with the diagram in Figure 5), it can be 

seen that CPPX preserves the structural information, but 

deletes comments and layout. Syntax in the source code is 

replaced by explicit relationships in the TA. 

It is the job of RCPPX to bridge the gap from TA back 

to source code.  RCPPX does this in three steps, first by a 

renaming script, second by transforming to nested syntax, 

and third by two structural transformations implemented 

in TXL [7]. 

6.1. Suffixing Script.

This first step modifies program identifiers as explained in 

section 5C above, in order to validate the extractor’s 

computation of semantic edges.  The result in the TA for 

the sample program is to replace 

@4 { name = y } 

by 
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@4 { name = y_1 } 

and similarly for node @9.

cRefersTo

@577 : cScopeCompil

   x : cObject @ @3

      cInstance -> int

   glup : cFunction @ @0

      cInstance -> void

      y : cFormalObject @ @4

         cInstance -> int

      @5 : cBlock

         @40 : cOperator

           op=asgn-eq

             x : cNameRef @ @2

            @55 : cOperator

              op=bplus

               y : cNameRef @ @9

               @66 : cLiteral

       cInstance -> int

                 value=1

cRefersTo

Figure 5. TA from example C program as a 
diagram

6.2. Nested Syntax.

In the second step, the ASG TA is translated to nested 

syntax.  This was done with the Grok relational calculator 

[15] [16]. Grok stores and manipulates a relational model 

using algebraic operators, and can read and write TA. In 

order to reveal syntactic structure, Grok’s operation 

showtree outputs the relational model in a form in which

tree edges are represented implicitly by nesting of braces, 

{ and }.  In the Datrix schema the tree edges are contain

and cInstance. Our example represented in showtree

format exhibits the tree structure once again represented  

by syntax, as seen here: 

@577 : cScopeCompil 
{  x : cObject @ @3 
      ( cInstance -> int @ @10 ) 
   glup : cFunction @ @0 
      ( cInstance -> void @ @7 ) 
   {  y_1 : cFormalObject @ @4 
         ( cInstance -> int @ @10 ) 
      @5 : cBlock
      {  @40 : cOperator  { op=asgn-eq } 
         {  x : cNameRef @ @2 
               ( cRefersTo -> x @ @3 ) 
            @55 : cOperator  { op=bplus }
            {  y_1 : cNameRef @ @9 

                  ( cRefersTo -> y_1 @ @4 ) 
               @66 : cLiteral 
                  { value=1 } 
                  ( cInstance -> int @ @10 ) 
            } 
         }
      }
   } 
}

6.3. TXL scripts.

The final step of RCPPX is carried out by two sets of TXL 

scripts [7].  TXL is a source transformation system based 

on context-free structure of input and output. 

The first TXL script reads its input in the showtree

format mentioned above.  This format is structurally 

similar to the original program (TXL understands 

programs), rather than to the fact base (TXL does not 

understand data bases).  The key idea is to use syntax 

(relative position in the token stream) to represent 

structural information, instead of using explicit relational 

edges.

TXL is well suited to translation from input according 

to one grammar into output according to a second 

grammar. TXL first inputs a union grammar [9] that 

encompasses the grammars of both the input and the 

output languages.  Driven by a command script, the TXL 

processor repeatedly manipulates the parse tree of the 

input, until the tree assumes the form specified by the 

output grammar. Then TXL outputs the result as a source 

program, which satisfies the output grammar. 

RCPPX drives TXL with a first set of scripts, which 

start by reading the ASG as represented in showtree

format.  These scripts carry out a pattern of simple local 

rewrite transformations in which subtrees are locally 

manipulated.  For example, an input showtree expression 

of the form 
   cOperator { op = bplus } { E1 E2 }

is transformed to this C/C++ expression 
   (E1 + E2)

Here is the TXL rule that carries out the transformation: 
   replace [operator] 
      cOperator { op = bplus }
           { E1 [expression] E2 [expression] } 
   by 
      (E1 + E2)

This replaces each operator in the program of the form 
   cOperator { op = bplus } { E1 E2 } 

with 
   (E1 + E2)

Next, RCPPX uses a second set of TXL scripts to carry 

out local rotation transformations, which change the order 

of entities.  For example, an input showtree fragment of 

the form 
   p : cObject 
   { cPtrType

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03) 
1095-1350/03 $ 17.00 © 2003 IEEE 



      {  int : cBuiltInType
}

   } 

is transformed to a C/C++ fragment of the form 
  int *p;  

This replaces cPtrType by a star (*) and “rotates” the 

fragment so that type int precedes the star and the star 

precedes  identifier p.  As well, the transformation deletes 

unwanted punctuation and keywords, and adds a 

semicolon.  Here is the TXL rule that does the 

replacement and the renaming: 
   replace [object] 
      cObject  cPtrType
         { T [type] }

D [declarator] 
   construct ND [declarator] 
      * D
   by 
      cObject T ND

In this rule, T corresponds to a type, such as int, and D

corresponds to an identifier, such as p.  The rule 

constructs ND as a temporary value consisting of a star 

preceding D.  The result of the transformation is  
   cObject T ND

whose value is 
   cObject T * D 

This rule is executed repeatedly and recursively to replace 

each cPtrType by a star and to rearrange terms.. 

The transformations that rewrite the ASG in TA and 

showtree notation to source programs in C/C++ notation 

could have been written in a language such as PERL or C.  

However, they are much easier to write and debug in a 

special syntactic transformation language such as TXL.  

Since they are straightforward, and are done in very high 

level notations, we have confidence that they are carried 

out reliably. 

7. Errors Found in CPPX 

Before we developed the validation method described 

in this paper, CPPX had been used to extract facts from a 

number of large systems, including PostgreSQL, which 

consists of about 400,000 lines of source code.  Because 

of this application of CPPX we knew that it was useable, 

but also that it had various bugs.  This knowledge 

motivated us to develop the validation method described 

in this paper. 

Here are three examples of the kinds of bugs we found 

in CPPX using our validation method. 

1) Headers of for loops.  A for loop header, e.g.,  
for (i = 1; i < 10; i ++) 

has, at most, three fields.  For example, the third field is 

omitted here: 
for (i = 1; i < 10) 

We found that when CPPX produced facts for a header 

with omitted fields, these facts did not specify which 

fields were missing. 

2) Details about data types.  We found that CPPX did 

not correctly handle certain details about data types such 

as struct and enum type.

3) Missing identifiers.  We found that CPPX 

sometimes omitted certain identifiers, such as names of 

structs.

We expect to find and correct more bugs in CPPX as 

our test suite grows and becomes more comprehensive. 

8. Conclusions and Future Work 

This paper presents a hierarchy of completeness for fact 

extractors and introduces the concept of relative 

completeness of extractors.  It gives a new method for 

validating a fact extractor.  The method avoids manual 

checking of generated fact bases. It works by recovering a 

version of the source program from the extracted factbase 

and compiling that version.   

Given certain properties of a compiler (idempotent 

front end and deterministic back end), the method is able 

to validate semantic completeness of the extractor by 

checking that the generated assembly language is identical 

for the original and recovered source programs.  This 

method was applied to the CPPX extractor.   

The correctness of name resolution in the factbase was 

checked by the artifice of suffixing a number (a node key) 

to local identifiers. 

In our application of this method to CPPX, we created a 

recovery transformation RCPPX.  We did this using high 

level tools including TXL and Grok, so RCPPX is small 

and sufficiently reliable. 

Our validation of CPPX has thus far been limited to 

source programs written in C; we expect to extend this 

work to C++ programs in the future.  Our validation test 

suite has been limited to programs of modest size, to allow 

us to monitor results as needed.  We plan to scale up these 

tests into a fully automatic testing framework.   

We have an experimental Java extractor, but thus far it 

does not produce facts at the level of statements and 

expressions. When it is extended to extract these facts and 

to be semantically complete, we will be able to apply our 

validation method. 

Our work involved two major surprises. First, we were 

surprised to discover that the assembly code for an 

original source program and for the version of the source 

program recovered from its extracted factbase were 

identical.  Second, we were surprised to find a mechanical 

test for a special case of a generally undecidable problem.  

In particular, our method tests the semantic equivalence of 

two programs, by using properties of the programs and the 

compiler.  Combining these two surprises, we developed a 
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method for an automatic validation for semantic 

completeness of a fact extractor. 
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