
Abstract

The process of software reverse engineering commonly

uses an extractor, which parses source code and extracts

facts about the code. The level of detail in these facts

varies from extractor to extractor. This paper describes

four levels of increasingly detailed completeness of these

facts: (semantic completeness, compiler completeness,

syntax completeness and source completeness) and

introduces the concept of relative completeness of

extractors. Validating that an extractor correctly

produces facts at a given level of completeness is in

general very challenging. This paper gives a method for

validating the semantic completeness of an extractor, and

describes the application of this method to CPPX, an

extractor for C or C++ based on GCC.

1. Introduction

Software reverse engineering extracts and presents

information about existing software systems. A key part

of this activity is automated by fact extractors which input

source code and produce facts about the code. These facts

can be thought of as rows in a relational data base table, or

as edges in a graph. For example, the fact (call, P, Q),

could mean that function P calls function Q.

The authors have been involved in developing of a

number of fact extractors, most recently CPPX (C++

Extractor) [8]. This extractor is based on the GCC open

source C++ compiler [13]. The GCC front end transforms

the source program into a corresponding Abstract Syntax

Graph (ASG); see Figure 1.

The ASG is an abstraction the program's syntax tree

decorated with edges that correspond to resolution of

references to declarations and with attributes representing

information such as line numbers.

Ordinarily, the back end of GCC proceeds to translate

the ASG to assembly language. CPPX operates by

replacing GCC's back end by a graph transformer, called

cppx (written in lower case to emphasize that it is only

part of the CPPX fact extractor). The cppx transformation

produces another version of the ASG, which satisfies the

Datrix schema [5] for representing facts about C or C++

programs. The Datrix schema is designed to be

convenient for reverse engineering purposes.

S o u r c e

C o d e
G C C A S G

F r o n t E n d

D a t r ix A S G

C P P X

A s s e m b ly

c o d e
B a c k E n d

G C C G C C

Figure 1. CPPX fact extractor. CPPX consists of the
GCC front end together with the CPPX graph transformer,
shown here as boxes and arrows drawn with solid lines

There has been considerable research on validating fact

extractors [18] [4] [19] [6]. In this paper we record the

approach we used toward validating the CPPX extractor.

More generally, we give a method for validating that an

extractor is semantically complete, that is, that its

extracted facts contain enough information to recover a

program with the same behavior as the original source

program.

The rest of this paper is organized as follows. Section 2

provides details about compiler phases and ASGs.

Section 3 provides background information on factbases,

schemas and exchange formats. Section 4 defines four

increasingly detailed levels of facts that an extractor may

produce and introduces the concept of relative

Completeness of a Fact Extractor

Yuan Lin, Richard C. Holt, Andrew J. Malton

School of Computer Science

University of Waterloo

200 University Avenue West

Waterloo, ON N2L 3G1, Canada

{y3lin,holt,ajmalton}@waterloo.ca

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

completenss of extractors. Section 5 gives a method for

validating the semantic completeness of a fact extractor

and explains how we applied this method to CPPX.

Section 6 discusses the cppx graph transformer. Section 7

lists problems in CPPX that were detected as a result of

applying our validation method. Finally, section 8

summarizes the research and proposes future work.

2. Compiler Phases and ASGs

In a typical compiler [1][3], the source code is initially

preprocessed, parsed, and subjected to semantic analysis.

In the case of GCC, these steps are carried out by its front

end; see Figure 1. Following these initial steps, the

assembly or machine code is generated, optimized and

emitted. These final steps are carried out by the compiler's

back end.

The result of parsing is a parse tree. Lexical details of

the source, such as spacing, comments, preprocessor

directives, do not appear in the tree. This tree is then

simplified and made more convenient for further

processing. The simplified tree is called the Abstract

Syntax Tree (AST).

The semantic analysis phase of compilation decorates

the AST by adding semantic information such as types of

identifiers, declaration locations and overload resolution.

The decorated AST is called the Abstract Semantic Graph

(ASG). After the insertion of semantic information, the

syntactic structure may be simplified further:

The nodes of the ASG represent source program

entities including types, classes, methods, statements,

expressions, and so on down to the lowest level of

constants and variable references. The edges represent

relationships between them. There are two kinds of edges

in the ASG: tree edges and semantic edges.

Tree edges give the tree structure of the ASG. They

represent containment in the source syntax. For example,

a declaration is contained by its scope, a declared

identifier by its declaration, a variable reference by an

expression involving it, and a conditional expression by

the if statement which it controls.

Semantic edges (non-tree edges) represent semantic

connections, such as typing and the resolution of scoped

names. For example, semantic edges connect the

operands of an expression to their declarations and an

instance declaration to its class type.

3. Schemas and Interchange Formats

An extractor such as CPPX can be used for a variety of

reverse engineering purposes, so its output (the Datrix

ASG factbase) should be available in a well documented,

accessible format. The format should determine a

concrete syntax, so the ASG can be conveniently input by

further reverse engineering tools such as visualizers and

analyzers.

A number of exchange formats have been proposed for

exchange of reverse engineering factbases, including GXL

[20] (based on XML), TA [14], RSF [21], and Grax [10].

CPPX generates TA by default, with an option to emit

GXL.

Besides determining a concrete syntax, exchange

formats such as TA and GXL allow the user to specify a

schema or data model. The schema constrains the

relationships between facts in the factbase and is used to

give an interpretation of those facts. For example, the

schema may constrain Call edges to connect only

Function nodes, and its interpretation may indicate that

each call in the source code is to have a corresponding

Call edge in the factbase. The key benefit of supporting

schemas, and not just a fixed exchanged format, is that

this allows the exchange format to be broadly used, across

a set of applications. The user of the format creates a

special schema to handle the data of interest, such as the

data generated by CPPX.

Examples of fact exchange schemas include the Datrix

schema [5], the Columbus schema [11] and the Dagstuhl

Middle-Level Model [17]. CPPX uses the Datrix schema.

(Technically speaking, CPPX uses a slightly modified

version of the Datrix schema. To simplify the

presentation in this paper, we will refer to these both as

simply the "Datrix schema".)

4. Completeness of Fact Extractors

An extractor is analogous to a compiler in that it inputs

source code and translates it to data in a very different

form. In the case of a compiler, the target data is

assembly or machine language, for use in linking and

execution. In the case of an extractor, the target data is

facts about the source, for use in reverse engineering.

The extracted factbase may include only high level

information, such as interactions between global entities

such as functions and classes, or may also contain detailed

information down to the level of statements and

expressions.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Table 1. Four levels of completeness for a fact
extractor

Level Question Definition

1. Source

complete

Are original and

recovered source

programs p0 and p1

identical, byte for byte,

including comments and

spacing?

p1 = R(g0)

2. Syntax

complete

Are original and

recovered syntax trees t0

and t1 identical?

t0 = FE(p0)

t1 = FE(p1)

3. Compiler

complete

Are original and

recovered assembly code

a0 and a1 identical?

a0 = BE(t0)

a1 = BE(t1)

4.

Semantically

complete

Are original and

recovered behaviors s0

and s1 equivalent?

s0=Sem(p0)

s1=Sem(p1)

4.1. Four Levels of Completeness

It is useful to characterize the extracted factbase in

terms of how complete it is. At the most inclusive

extreme, the factbase can be source complete, meaning

that it is possible to recover the exact source program,

byte for byte, including comments and white space, from

the factbase. Most extractors including CPPX are not

source complete, because information such as white space

is not usually needed and would bloat the factbase with

unwanted detail.

A fact extractor E inputs the original source program p0

and produces factbase g0, i.e., g0 = E(p0); see Table 1. In

this figure, FE and BE are the Front End and Back End of

a compiler. Sem maps a program to its semantics

In Table 1 we define four levels of completeness for an

extractor. These levels are a generalization of source

completeness as defined by Dean et al [8]. At each level,

completeness is defined by whether the extracted factbase

retains enough information to answer a certain question.

Figure 2 illustrates how the questions in levels 1 to 3

might be addressed by means of testing.

4.2. Hierarchy of Completeness

From top to bottom in Table 1, or from left to right in

Figure 2, completeness becomes weaker, i.e., the levels

form a completeness hierarchy in which less information

needs to be retained in the factbase as the level number

Source

Program p
0

Assembly

Code a
1

ASG t
1

Factbase g
0

Source

Program p
1

Assembly

Code a
0

ASG t
0

Front

end

Back

end

Back

end

Front

end

Extractor

E

Compiler

completeness

Syntax

completeness
Source

completeness

Figure 2. Validating three kinds of
completeness

increases.

If an extractor is source complete, it is also syntax

complete, because the extracted factbase g0 can be

transformed back to the original source program, from

which the original syntax tree can be derived. By a

similar argument, source completeness also implies

compiler completeness and semantic completeness.

Syntax completeness implies both compiler

completeness and semantic completeness because the

syntax tree incorporates all the information about a

program that is needed for code generation. Assuming the

compiler is correct, compiler completeness implies

semantic completeness because if original source and the

recovered source have identical generated assembly

language then they must have the same semantics.

We have left the definition of syntax completeness

somewhat ambiguous, allowing it to be based on either the

context free parse tree or on the ASG, whichever is most

convenient for a given purpose.

4.3. Semantic Completeness

The lowest level in Table 1 is semantic completeness,

which retains information about program behavior. This

level is particularly interesting because this information is

needed by many reverse engineering tasks. This is the

level of completeness that CPPX (supposedly) attains.

In level 4 of Table 1, we have assumed there is a

semantics function Sem, which maps a source program to

a representation of its behavior. Unfortunately, for

production languages such as C and C++, such a function

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

has not been formally defined. Furthermore, the equality

of semantics is undecidable: In general we can’t check if

two programs p0 and p1 have the same behavior. Since

semantic completeness asks whether p0 and p1 are

semantically equivalent, it seems that determining if an

extractor is semantically complete must be quite a

challenge! We take up that challenge in the last half of

this paper.

Many extractors do not extract enough information to

satisfy any of the levels in Table 1. For example, the CFX

extractor [12] only extracts information at the level of

functions and global variables along with the interactions

among them. This level is sufficient for certain reverse

engineering analyses such as recovery of architecture, but

is not sufficient for analysis involving function bodies.

(We might call this “architecture complete” if we assume

that architectural design recovery is based only on

functions and global variables.)

CPPX’s goal was to retain as much useful information

as possible from the GCC ASG, and more information

than is retained by most existing fact extractors. As a

result, we decided to try to make CPPX to semantically

complete.

4.4. Relative Completeness

While the four kinds of completeness we have

described are important, they are not the only possible

kinds of extractor completeness. Consider the possibility

that a use-def graph [2] is needed to detect dead code. We

define an extractor to be use-def complete if its created

factbase contains enough information to produce a use-def

graph.

More generally, we will now introduce the formal

concept of relative completeness among translators and

extractors, as follows. Suppose a source program p is

translated by transformation T to produce T(p). For

example, T might be the front end FE of a compiler or

might be an extractor for use-def graphs. Program p is

also transformed by extractor E to produce information

E(p). We define that E is at least as complete as T if the

information produced by E can be further processed to

create the information created by T. (See Figure 3.)

Formally, we define this as follows:

Definition 1. If there exists a function F such that for

all p

F(E(p)) = T(p)

then we say E is at least as complete as T. We write this

as:

 E c T

See Figure 3 for illustration of T, E and F.

Although Definition 1 is intuitively appealing, in actual

practice, as illustrated by Figure 2, we used the following

definition involving a recovery transformation R:

Definition 2. If there exists a function R such that for

all p

T(R(E(p))) = T(p)

then we say E is at least as complete as T. We write this

as:

 E c T

This second definition states that E is more complete

than T if E’s output E(p) can be recovered back to R(E(p))

which T processes to output equivalent to T(p).

Fortunately, the two definitions are equivalent, as we will

now show.

Proposition. Definitions 1 and 2 are equivalent.

We will now prove this proposition. It is obvious that

if R exists, F also exists, because F can be defined in

terms of R as

F(e) = T(R(e)).

Source

Program p

Factbase

e

Transform

Output

t

Transform

T

Extractor

E

Recovery

Transform

R

Forward

Transform

F

Figure 3. Relative completeness of E and T

Now consider the converse: suppose F exists such that

F(E(p)) = T(p). We show that R exists such that T(R(E(p))

= T(p). Suppose T1(t) is a left inverse of T, that is,

T1(T(p)) = p. Then let R (e) = T1(F(e)), and we have

T(R(E(p)) = T(T1(F(E(p)) = T(T1(T(p)) = T(p) as

required. Such T1 exists since it only needs to be defined

on the range of T. End of proof.

Aside. Note that if F, E, and T are programs, then R

can also be a program: that is, R is computable. Given an

extraction e, it is sufficient (for R) to generate programs p

in the source language and test them successively until

one be found for which T(p) = e. However, this is not very

efficient! In practice R examines e, which is a data

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

structure, and constructs p from the information therein.

Although we have explained the concept of relative

completeness in terms of extractors and translators, this

concept is purely mathematical, and can be applied to any

functions. The relative completeness operator c forms a

lattice. Its top element is ID (the identity function):

 T ID c T

which means that no transform can preserve more

information than does the identity function. Its least

elements are any constant function K:

 T T c K

which means that translating the input program to a

constant, such as the null string, loses all information

about the input.

 The four hierarchical levels of completeness (source,

syntax, compiler and semantic completeness) can be

defined in terms of relative completeness. For example,

extractor E is compiler complete for compiler C if E c C.

E is ASG complete for front end FE if E c FE. E is

source complete for compiler C if E c ID, which means

that the facts extracted by E can be used to reconstruct the

source program.

 With this discussion of completeness behind us, we are

ready to explain how we validated CPPX’s semantic

completeness.

5. Validating CPPX's Semantic

Completeness

This section describes the method we used to validate

the semantic completeness of CPPX. Perhaps the most

obvious approach to validate CPPX is to run it against a

large test suite of source programs, and to check that the

extracted factbase for each test is correct. This approach

would be very expensive, as it requires extensive manual

work to do the checking or to create putatively correct

factbases for comparison to CPPX generated factbases.

As we will explain, our approach to validation of CPPX

uses a test suite of programs, but avoids this manual step.

The structure of CPPX was introduced using Figure 1.

(Recall that CPPX consists of the front end of GCC

together with the cppx graph transformation.)

Figure 4 expands Figure 1 by adding a transformation

called RCCPX (Reverse CPPX), which recovers a source

program p1 from CPPX's extracted ASG g0. The figure

shows recovered source p1 being compiled by GCC's front

end and back end to produce assembly code a1.

If all phases in the diagram are working correctly and

CPPX is compiler complete, then the assembly language

a0 from any original source p0 will be the same as its

recovered assembly language a1 from recovered source p1.

As is explained below, our validation method for CPPX

works by checking that a0 and a1 are identical for a suite

of test source programs.

5.1. Why are Assembly Codes a0 and a1 Identical?

Suppose we run a source program p0 through the phases

shown in Figure 4. If we find that a0 and a1 identical, what

can we conclude? It is tempting to conclude that this

implies that cppx is semantics complete. However, this

might not be the case. If GCC's back end is severely

buggy and acts as a constant function K, producing null

output for all input, then a0 and a1 will always be identical,

regardless of the actions of CPPX. Since GCC is widely

used in production, it is clear that its back end is not

severely buggy. In fact, we can safely assume that its

back end and front end together reliably generate correct

assembly output for most input source programs.

As we will explain below, the recovery transformation

RCPPX is written to be simple and easy to make correct,

so we can expect that it is reasonably reliable. So, we can

conclude that if there is a failure in one of the phases

shown in Figure 4, the failure will probably occur in the

least reliable phase, namely, in the cppx transformation

phase.

Even if CPPX is semantically complete, it would be

wrong to expect a0 and a1 to be identical. After all, GCC

is an optimizing compiler, and the smallest change in its

input, as p0 varies to p1, may produce a change from a0 to

a1 while maintaining the same semantics. So, it may come

as a surprise to learn that when we run test source

programs though the configuration in Figure 4, a0 and a1

turn out to be identical (ignoring the cases when we

encounter a bug in CPPX). We will now answer the

question: Why are a0 and a1 identical?

Although GCC's back end is extremely complex, it is

deterministic, i.e., for the same input it always generates

the same output assembly code. So, if the GCC ASGs t0

and t1, for the top and bottom lines in Figure 2, are the

same, then a0 and a1 will be identical. So the question

becomes: Can we expect the GCC ASGs to be the same

for source programs p0 and p1?

To our mild disappointment, we discovered that GCC's

front end does some low level program transformations.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Source

Program p
0

Assembly Code

a
1

GCC ASG t
1

Datrix ASG

g
0

Source

Program p
1

Assembly Code

a
0

GCC ASG t
0

GCC

front

end

GCC

back

end

GCC

back

end

GCC

front

end

RCPPX

cppx

Compiler

completeness

Figure 4. Validating Completeness of CPPX

For example, it rewrites the integer comparison j >= 2 into

j > 1. Because of this, one might conclude that it is

unlikely that the two GCC ASGs t0 and t1 can be

identical. It turns out that this conclusion is not warranted

for the following reason.

Apparently, the purpose of these rewrites is to produce

a standard or canonical form for a few special constructs,

and that these rewrites are idempotent, i.e., doing them a

second time has no effect. If we denote this rewriting as

function f, we can expect or hope that, f(p0) = f(p1). What

we observed was that, with cppx working properly, the

two ASGs were effectively the same, i.e., they were

treated the same by the back end. The idempotent property

of the GCC front end together with the deterministic

nature of the GCC back end yields the overall property

that, when cppx is operating correctly, a0 and a1 are

identical.

After our initial validation of CPPX was largely

finished, we ran tests to see if ASGs t0 and t1 were the

same. We found that they were very similar but not

identical. They differed in their information about file and

line location. They also differed due to renaming of local

variables, as described below. These differences do not

effect the generated code. Probably they could be

eliminated by deleting file and line information and by

optionally disabling the renaming of local variables, but

we have not tried this.

In short, CPPX is almost ASG-complete, but our

method of validation only shows the technically weaker

property of compiler completeness. Compiler

completeness seems to be more “surprising” and

satisfying as its definition doesn’t rely on the internal

details of the compiler.

5.2. Suite of Test Programs

In our validation of CPPX, we used a test suite of C and

C++ programs derived from two sources. The first part of

this suite consists of a set of small programs that were

designed to show how source programs are represented

when using the Datrix schema. The second part consists

of the suite of C and C++ programs used to test the GCC

compiler. Combined, these two parts provide an initial

reasonable coverage of the features of C and C++. (Note

that we have thus far concentrated on validating CPPX on

C rather than on C++ input.)

5.3. The Resolution Problem

As we have explained, CPPX generates an ASG in

which tree edges represent the containment structure and

semantic edges give connections in the tree. One key use

of semantic connections to represent references to

declarations. For example, in the following program,

there is a reference from the final x on line 4 to the local

declaration of x (line 3), not to the global declaration of x

(line 1).

1 int x;
2 int f() {
3 int x;
4 x++;
5 }

In the corresponding ASG, there is an edge from the

node for the final x to the node for the declaration of the

local x and not to the global declaration. This edge is

redundant in the sense that the scope rules of the

programming language imply which declaration the final

x is referencing. Despite this redundancy, such edges are

important because they allow the resolution problem (the

sometimes difficult problem of resolving appropriate

references) to be reliably solved once, in the extractor.

Indeed, one of the reasons CPPX is based on GCC is to

take advantage of the fact that GCC's ASG provides a

reliable solution to this problem.

Now consider the possibility that CPPX might

incorrectly solve the resolution problem, for example, by

generating the reference edge from the final x to the global

x instead of to the local x. Unfortunately, this error would

not be detected by our validation method for CPPX,

because in the recovered source program p1, there is no

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

record of this edge and hence no evidence of the error.

Although CPPX creates this edge, RCPPX deletes it when

recovering the source program.

We devised the following approach to allow our

validation method to check that resolution edges in the

factbase are correct: local (non-external) identifiers are

systematically renamed to be unique, by suffixing

additional characters. For the above example, the

recovered program p1 would have this form:

1 int x;
2 int f() {
3 int x_2;
4 x_2++;
5 }

This renaming is done in way that avoids clashing with

any global identifiers which might have a similar form. If

the global had been called ‘x_2’ then this would of course

not be chosen as the new name of the local.

With this suffixing convention, if CPPX generates

incorrect reference edges, the resulting semantic errors

will be reflected in the recovered code. As a result, our

validation method effectively checks that reference edges

are correct, and that the CPPX has correctly solved the

resolution problem.

6. RCPPX: Recovering Source from Facts

As can be seen in Figure 4, to use our validation

method, we need a recovery transformation, namely we

need RCPPX. RCPPX inputs a Datrix ASG in the TA

exchange format and outputs the equivalent C/C++ source

program. TA is a relational notation, whose underlying

data model is much like a Relational Data Base. In TA,

there is a set of triples, recording the source, target and

type of each edge in a graph. In this case, the graph is the

Datrix ASG. As well, there are triples that represent

attributes. In TA, this information is encoded as an ASCII

stream, stored in a flat file.

The following is a tiny C compilation unit, which will

serve as an example:

/* A tiny program */
int x;
void glup (int y) {
 x = y + 1;

}

The CPPX extractor translates this program to TA

notation (simplified here for presentation purposes) as

follows:

FACT TUPLE :

$INSTANCE @0 cFunction

cRefersTo @2 @3
$INSTANCE @2 cNameRef
$INSTANCE @3 cObject
$INSTANCE @4 cFormalObject
$INSTANCE @5 cBlock
$INSTANCE @7 cBuiltInType
cRefersTo @9 @4
$INSTANCE @9 cNameRef
$INSTANCE @10 cBuiltInType
contain @40 @2
$INSTANCE @15 cBuiltInType
cInstance @3 @10
contain @40 @55
contain @55 @9
contain @55 @66
contain @0 @5
cInstance @0 @7
cInstance @4 @10
contain @0 @4
cInstance @66 @10
contain @5 @40
$INSTANCE @40 cOperator
$INSTANCE @55 cOperator
$INSTANCE @66 cLiteral
contain @577 @3
contain @577 @0
$INSTANCE @577 cScopeCompil

FACT ATTRIBUTE :

@0 { name = glup }
@2 { name = x }
@3 { name = x }
@4 { name = y }
@7 { name = void }
@9 { name = y }
@10 { name = int }
@40 { op = asgn-eq }
@55 { op = bplus }
@66 { value = 1 }

This TA represents a graph, which is diagrammed in

Figure 5. By comparing the source program with its

image in TA (or with the diagram in Figure 5), it can be

seen that CPPX preserves the structural information, but

deletes comments and layout. Syntax in the source code is

replaced by explicit relationships in the TA.

It is the job of RCPPX to bridge the gap from TA back

to source code. RCPPX does this in three steps, first by a

renaming script, second by transforming to nested syntax,

and third by two structural transformations implemented

in TXL [7].

6.1. Suffixing Script.

This first step modifies program identifiers as explained in

section 5C above, in order to validate the extractor’s

computation of semantic edges. The result in the TA for

the sample program is to replace

@4 { name = y }

by

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

@4 { name = y_1 }

and similarly for node @9.

cRefersTo

@577 : cScopeCompil

 x : cObject @ @3

 cInstance -> int

 glup : cFunction @ @0

 cInstance -> void

 y : cFormalObject @ @4

 cInstance -> int

 @5 : cBlock

 @40 : cOperator

 op=asgn-eq

 x : cNameRef @ @2

 @55 : cOperator

 op=bplus

 y : cNameRef @ @9

 @66 : cLiteral

 cInstance -> int

 value=1

cRefersTo

Figure 5. TA from example C program as a
diagram

6.2. Nested Syntax.

In the second step, the ASG TA is translated to nested

syntax. This was done with the Grok relational calculator

[15] [16]. Grok stores and manipulates a relational model

using algebraic operators, and can read and write TA. In

order to reveal syntactic structure, Grok’s operation

showtree outputs the relational model in a form in which

tree edges are represented implicitly by nesting of braces,

{ and }. In the Datrix schema the tree edges are contain

and cInstance. Our example represented in showtree

format exhibits the tree structure once again represented

by syntax, as seen here:

@577 : cScopeCompil
{ x : cObject @ @3
 (cInstance -> int @ @10)
 glup : cFunction @ @0
 (cInstance -> void @ @7)
 { y_1 : cFormalObject @ @4
 (cInstance -> int @ @10)
 @5 : cBlock
 { @40 : cOperator { op=asgn-eq }
 { x : cNameRef @ @2
 (cRefersTo -> x @ @3)
 @55 : cOperator { op=bplus }
 { y_1 : cNameRef @ @9

 (cRefersTo -> y_1 @ @4)
 @66 : cLiteral
 { value=1 }
 (cInstance -> int @ @10)
 }
 }
 }
 }
}

6.3. TXL scripts.

The final step of RCPPX is carried out by two sets of TXL

scripts [7]. TXL is a source transformation system based

on context-free structure of input and output.

The first TXL script reads its input in the showtree

format mentioned above. This format is structurally

similar to the original program (TXL understands

programs), rather than to the fact base (TXL does not

understand data bases). The key idea is to use syntax

(relative position in the token stream) to represent

structural information, instead of using explicit relational

edges.

TXL is well suited to translation from input according

to one grammar into output according to a second

grammar. TXL first inputs a union grammar [9] that

encompasses the grammars of both the input and the

output languages. Driven by a command script, the TXL

processor repeatedly manipulates the parse tree of the

input, until the tree assumes the form specified by the

output grammar. Then TXL outputs the result as a source

program, which satisfies the output grammar.

RCPPX drives TXL with a first set of scripts, which

start by reading the ASG as represented in showtree

format. These scripts carry out a pattern of simple local

rewrite transformations in which subtrees are locally

manipulated. For example, an input showtree expression

of the form
 cOperator { op = bplus } { E1 E2 }

is transformed to this C/C++ expression
 (E1 + E2)

Here is the TXL rule that carries out the transformation:
 replace [operator]
 cOperator { op = bplus }
 { E1 [expression] E2 [expression] }
 by
 (E1 + E2)

This replaces each operator in the program of the form
 cOperator { op = bplus } { E1 E2 }

with
 (E1 + E2)

Next, RCPPX uses a second set of TXL scripts to carry

out local rotation transformations, which change the order

of entities. For example, an input showtree fragment of

the form
 p : cObject
 { cPtrType

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

 { int : cBuiltInType
}

 }

is transformed to a C/C++ fragment of the form
 int *p;

This replaces cPtrType by a star (*) and “rotates” the

fragment so that type int precedes the star and the star

precedes identifier p. As well, the transformation deletes

unwanted punctuation and keywords, and adds a

semicolon. Here is the TXL rule that does the

replacement and the renaming:
 replace [object]
 cObject cPtrType
 { T [type] }

D [declarator]
 construct ND [declarator]
 * D
 by
 cObject T ND

In this rule, T corresponds to a type, such as int, and D

corresponds to an identifier, such as p. The rule

constructs ND as a temporary value consisting of a star

preceding D. The result of the transformation is
 cObject T ND

whose value is
 cObject T * D

This rule is executed repeatedly and recursively to replace

each cPtrType by a star and to rearrange terms..

The transformations that rewrite the ASG in TA and

showtree notation to source programs in C/C++ notation

could have been written in a language such as PERL or C.

However, they are much easier to write and debug in a

special syntactic transformation language such as TXL.

Since they are straightforward, and are done in very high

level notations, we have confidence that they are carried

out reliably.

7. Errors Found in CPPX

Before we developed the validation method described

in this paper, CPPX had been used to extract facts from a

number of large systems, including PostgreSQL, which

consists of about 400,000 lines of source code. Because

of this application of CPPX we knew that it was useable,

but also that it had various bugs. This knowledge

motivated us to develop the validation method described

in this paper.

Here are three examples of the kinds of bugs we found

in CPPX using our validation method.

1) Headers of for loops. A for loop header, e.g.,
for (i = 1; i < 10; i ++)

has, at most, three fields. For example, the third field is

omitted here:
for (i = 1; i < 10)

We found that when CPPX produced facts for a header

with omitted fields, these facts did not specify which

fields were missing.

2) Details about data types. We found that CPPX did

not correctly handle certain details about data types such

as struct and enum type.

3) Missing identifiers. We found that CPPX

sometimes omitted certain identifiers, such as names of

structs.

We expect to find and correct more bugs in CPPX as

our test suite grows and becomes more comprehensive.

8. Conclusions and Future Work

This paper presents a hierarchy of completeness for fact

extractors and introduces the concept of relative

completeness of extractors. It gives a new method for

validating a fact extractor. The method avoids manual

checking of generated fact bases. It works by recovering a

version of the source program from the extracted factbase

and compiling that version.

Given certain properties of a compiler (idempotent

front end and deterministic back end), the method is able

to validate semantic completeness of the extractor by

checking that the generated assembly language is identical

for the original and recovered source programs. This

method was applied to the CPPX extractor.

The correctness of name resolution in the factbase was

checked by the artifice of suffixing a number (a node key)

to local identifiers.

In our application of this method to CPPX, we created a

recovery transformation RCPPX. We did this using high

level tools including TXL and Grok, so RCPPX is small

and sufficiently reliable.

Our validation of CPPX has thus far been limited to

source programs written in C; we expect to extend this

work to C++ programs in the future. Our validation test

suite has been limited to programs of modest size, to allow

us to monitor results as needed. We plan to scale up these

tests into a fully automatic testing framework.

We have an experimental Java extractor, but thus far it

does not produce facts at the level of statements and

expressions. When it is extended to extract these facts and

to be semantically complete, we will be able to apply our

validation method.

Our work involved two major surprises. First, we were

surprised to discover that the assembly code for an

original source program and for the version of the source

program recovered from its extracted factbase were

identical. Second, we were surprised to find a mechanical

test for a special case of a generally undecidable problem.

In particular, our method tests the semantic equivalence of

two programs, by using properties of the programs and the

compiler. Combining these two surprises, we developed a

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

method for an automatic validation for semantic

completeness of a fact extractor.

References

[1] A. Aho et al. Principles of Compiler Design. Addison-

Wesley, 1977.

[2] A. Aho et al. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[3] A. Appel Modern Compiler Implementation in Java.

Cambridge University Press. 1998.

[4] M.N. Armstrong et al. “Evaluating Architectural

Extractors”. In Fifth Working Conference on Reverse

Engineering (WCRE '98) pp. 30-39, October 1998.

[5] Bell Canada, DATRIX™ Abstract Semantic Graph:

Reference Manual, Version 1.4, Bell Canada Inc.,

Montreal, 2000.

[6] B. Bellay, H. Gall. “A Comparison of Four Reverse

Engineering Tools”. In Fourth Working Conference on

Reverse Engineering (WCRE '97). pp. 2-11, Amsterdam.

October 1997.

[7] J.R. Cordy et al. “Source Transformation in Software

Engineering using the TXL Transformation System”. In

Special Issue on Source Code Analysis and Manipulation,

Journal of Information and Software Technology 44,13

(October 2002), pp. 827-837.

[8] T. R. Dean et al. “Union Schemas as a Basis for a C++

Extractor”, In Proceedings of WCRE 2001: Working

Conference on Reverse Engineering, Stuttgart, Germany,

Oct 2-5, 2001

[9] T. R. Dean et al. “Grammar programming in TXL”. In

Proceedings of Second IEEE International Workshop on

Source Code Analysis and Manipulation. Montréal, October

2002.

[10] J. Ebert et al. “Graph Based Modeling and Implementation

with EER/GRAL”. In Thalheim, B. 15th International

Conference on Conceptual Modeling (ER'96), Proceedings.

LNCS 1157, pp. 163-178, Berlin. Springer-Verlag.

[11] Ferenc R. et al. “Columbus - Reverse Engineering Tool and

Schema for C++” In Proceedings of the International

Conference on Software Maintenance (ICSM 2002), IEEE

Computer Society, 2002

[12] P. J. Finnegan et al “The software bookshelf”. IBM Systems

Journal, Vol. 36, No. 4, pp. 564-593, November 1997. See

http://www.research.ibm.com/journal/sj/ for the paper and

http://swag.uwaterloo.ca/pbs/ for PBS.

[13] Free Software Foundation. The GNU Compiler Collection.

See http://gcc.gnu.org/.

[14] R. C. Holt. “An Introduction to TA: the Tuple-Attribute

Language, March 1997 (updated July 2002).” See

http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm

[15] R. C. Holt. “Introduction to the Grok Programming

Language”. From http://plg.uwaterloo.ca/~holt/papers/grok-

intro.doc

[16] R. C. Holt. “Structural Manipulations of Software

Architecture using Tarski Relational Algebra”. In WCRE

'98: Working Conference on Reverse Engineering,

Honolulu, Oct 1998.

[17] T. C. Lethbridge et al. “The Dagstuhl Middle Model

(DMM) Version 0.005 – Feb 20, 2002”. See

http://scgwiki.iam.unibe.ch:8080/Exchange/2.

[18] G. C. Murphy et al. “An Empirical Study of Static Call

Graph Extractors”. In ACM Transactions on Software

Engineering and Methodology, 7(2): pp. 158-191, April

1998

[19] S. E. Sim et al. “On Using a Benchmark to Evaluate C++

Extractor”, In Proc. IWPC '02, Paris, June, 2002

[20] A. Winter. “Exchanging Graphs with GXL”. In P. Mutzel

(ed.) Graph Drawing - 9th Interational Symposium, GD

2001, Vienna, Springer-Verlag. 2001.

[21] K. Wong. The Rigi User's Manual - Version 5.4.4. The Rigi

Group, June 1998. See http://www.rigi.csc.uvic.ca/

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

