
Mining Software Repositories
to Assist Developers and Support Managers

Ahmed E. Hassan
Dept. of Electrical and Computer Engineering

University of Victoria
Victoria, Canada

ahmed@ece.uvic.ca

ABSTRACT
Software repositories (such as source control repositories)
contain a wealth of valuable information regarding the evo-
lutionary history of a software project.

This dissertation presents approaches and tools which mine
and transform static record keeping software repositories to
active repositories used by researchers to gain empirically
based understanding of software development, and by prac-
titioners to predict, plan and understand various aspects of
their project. Our work is validated empirically using data
based on over 60 years of development history for several
open source projects.

1. INTRODUCTION
Historical information stored in software repositories provide
a great opportunity to study large projects and products
while not interfering with development processes and dead-
lines: Source control systems store changes to the source
code as development progresses, defect tracking systems fol-
low the resolution of software defects, and archived com-
munications between project personnel record rationale for
decisions throughout the life of a project. Such historical
data is available for most software projects and represents
a detailed and rich record of the historical development of
a software system. Moreover, current software engineering
research approaches and techniques can benefit from using
such historical information. For example, historical informa-
tion can assist developers in understanding the rationale for
the current structure of a software system [6]. This disserta-
tion explores mining data stored in software repositories in
order to support software developers and managers in their
endeavors to build and maintain complex software systems.

1.1 Early Research
Software repositories have primarily been used for historical
record keeping activities such as retrieving old versions of
the source code or tracking the status of a defect. A few

studies have emerged that use this data to study various as-
pects of software development such as software architecture,
code reuse, development process and developer motivation.
Research by Gall et al. [2] has shown that software repos-
itories can support developers changing legacy systems by
pointing out hidden code dependencies. Chen et al. [1] have
shown that historical information can assist developers in
understanding large systems. Graves et al. [3] and Mockus
et al. [8] demonstrated that historical change information
can support management in predicting bugs and effort to
ease the evolution of reliable software systems. These early
studies highlighted the benefits of historical project data.

1.2 Personal Experience
Working as part of several industrial organizations, such as
Research In Motion, IBM Research, and Nortel, the au-
thor found himself and other developers examining software
repositories (such as source control systems), in an ad-hoc
fashion, to clarify many of our concerns and understand-
ing of a software system or to gauge the state of a software
project, for example:

1. In the role of a head developer of a project, we were fre-
quently asked for estimates on when a project is ready
for release, about a project’s expected reliability or con-
cerning the need for testing resources – we adopted coarse
estimates by examining the change history of the software
system as stored in its source control repository.

2. In the role of a developer, we faced the daunting task of
understanding large complex systems which were devel-
oped by others, enhanced by many and patched frequently
to meet tight deadlines or critical emergencies – we found
ourselves along with other developers falling back to the
initial version of a complex piece of code to understand it.
In many cases, the initial cut of a piece of code was eas-
ier to understand and was cleaner than the current code.
Moreover, we often investigated prior changes to code seg-
ments to gain a better understanding of the rationale for
their current complexity or to clarify design choices.

1.3 The Open Source Phenomena
The promising results obtained from early studies along with
our personal industrial experience highlighted to us the po-
tential of software repositories in supporting developers and
managers working on large software systems. In order to
pursue our research, we needed a large number of projects
(Guinea Pigs) for which we could analyze their historical

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

development records. The explosive growth of open source
offered us the opportunity to study several large open source
projects who keep their repositories accessible online for de-
velopers around the world to contribute to their project.
Furthermore, most of the project’s communication and de-
velopment documentation is archived online. The large num-
ber of available projects and the ease of access to their his-
tory permitted us to empirically verify our proposed tech-
niques and approaches, and to interpret our findings.

2. RESEARCH HYPOTHESIS
Early findings and our industrial experience lead to the for-
mation of our research hypothesis. We believe that:

!

"

#

$

Software repositories contain a wealth of valuable in-
formation about the evolution of a software project.
By mining such historical information, we can develop
techniques and approaches to support developers and
managers in their endeavors to build and maintain
complex software systems.

Throughout out the dissertation, we demonstrated the value
of mining software repositories by studying and formalizing
ad-hoc techniques adopted by practitioners who use histor-
ical records as part of their day to day job. In particular,
we developed approaches and techniques that use the evolu-
tionary history of software projects to assist:

• Developers:
− in understanding legacy code and discovering the ra-

tionale behind the current software structure.
− in ensuring that changes are propagated to the ap-

propriate parts of the code.
• Managers:
− in predicting faults in a software system.
− in allocating their limited testing resources to the

most appropriate parts of the software system.

We as well demonstrated that the mining process can be au-
tomated in order to robustly process the historical records
for long lived software systems. By automating this pro-
cess, we could study a large number of systems. By docu-
menting and presenting our process, interested researchers
and practitioners could easily apply or extend our proposed
techniques, and could investigate other possible uses of the
recovered data.

3. OVERVIEW OF THE DISSERTATION
Our dissertation work could be broken into three different
parts. Each part focuses on the interests of particular roles
(researchers, developers, and managers). For researchers,
we presented techniques to automate the mining process of
large historical repositories. For developers and managers,
we presented techniques to help them understand, maintain,
and manage large projects using historical information.

3.1 Extracting Information From Repositories
Although software repositories are available for most large
software projects, the data stored in these repositories has
rarely been the focus of software engineering research. We
believe that this is mainly owing to the following hurdles:

1. The limited access to such repositories prevented researchers
from studying them. Companies in many cases are not
willing to offer researchers access to such detailed historical
information about their software systems. Another possi-
ble source for repositories to study is academic projects.
Unfortunately, software systems developed in academia tend
to have a small number of developers, a short life span, and
their development history is not as rich nor as interesting
as the history of long lived industrial software systems.

2. The complexity of processing large repositories in an au-
tomated fashion hindered the adoption and integration
of data from software repositories in other software en-
gineering research. In many cases, software engineering
researchers do not have the expertise required nor do they
have the interest to recover data from software repositories.

With the advent of open source systems, researchers had
access to rich repositories for large projects developed by
hundreds of developers over extended periods of time. This
lead to early research in mining software repositories which
was based on open source projects [1]. The second hurdle
concerning the complexity of extracting information from
these large historical repositories remained. To overcome
this hurdle, we proposed evolutionary code extractors. These
extractors automatically recover the evolutionary history of
software systems and represent it in a simple and easy to
access format, hence the data becomes more accessible for
researchers to investigate and integrate in their studies.

We designed and developed an evolutionary code extrac-
tor for the C programming language called C-REX. C-REX
mines the data stored by a source control system as an exam-
ple of a software repository. Whereas, most source control
systems record changes to the code at the file level, C-REX
traces changes to specific source code entities, such as func-
tions, variables, or data type definitions. C-REX can then
track details such as:

• Addition, removal, or modification of a source code
entity such as adding or removing a function.

• Changes to dependencies between source code enti-
ties. For example, we can determine that a function no
longer uses a specific variable or that a function now
calls another function.

Furthermore, C-REX lexically analyzes the content of the
change message attached to a modification to automatically
classify modifications into three types: Fault Repairing mod-
ifications (FR), Feature Introduction modifications (FI), and
General Maintenance modifications (GM). The recovered data
is stored in a format that is easy to process by researchers
with little knowledge about software repositories.

Using the data recovered by C-REX for several open source
projects, we conducted a survey to investigate how practi-
tioners make use of change messages and what type of infor-
mation exists in them. We investigated the quality of auto-
matic classifications done by C-REX. We also asked practi-
tioners to compare change messages in open source systems
to ones in commercial systems. In particular, we sought to
answer questions such as:

• Do developers usually enter meaningful and descriptive
change messages?

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

• Do developers monitor such messages and react to their
content?

• Do developers make use of these message as they main-
tain and enhance code, or are they ignored?

• Can we automatically determine the type of a change
as being a bug fix or a feature?

The findings of our survey suggest that change messages are
a valuable resource which practitioners use to maintain and
manage software projects. For example, practitioners use
change messages to understand the code when they are fixing
a bug. Moreover, change messages in open source projects
are similar to messages that developers encounter in large
commercial projects. An automated approach to determine
the purpose of a change using the change message is likely
to produce results similar to a manual analysis performed
by professional developers. The results of our survey along
with our ability to automate the mining process of software
repositories encouraged us to investigate techniques and ap-
proaches to study and formalize practitioners’ ad-hoc uses
of repositories. The following two parts of our dissertation
study the use of historical data derived from software repos-
itories to support developers and managers.

3.2 Using Software Repositories to Support
Developers

Developers maintaining large software projects need tools to
assist them in changing the software system and understand-
ing it. The cost of performing incorrect changes to a legacy
system is very expensive since it will likely introduce bugs.

Dependency graphs have been proposed and used in many
studies and maintenance activities to assist developers in
understanding large software systems before they embark
on modifying them to meet new requirements or to repair
faults. Call graphs and data usage graphs are the most com-
monly used dependency graphs. These graphs show the cur-
rent structure of the software system (e.g. In a compiler, an
Optimizer function calling a Parser function). These graphs
fail to reveal details about the structure of the system that
are needed to gain a better understanding. For example,
traditional call graphs cannot give the rationale behind an
Optimizer function calling a Parser function.

In [6], we presented an approach which recovers valuable
information from source control systems and attaches this
information to the static dependency graph of a software
system. We call this recovered information – Source Sticky
Notes. We showed how to use these notes along with the
software reflexion framework [9] to assist in understanding
the architecture of large software systems. To demonstrate
the viability of our approach, we applied it to understand
the architecture of NetBSD – a large open source operating
system.

In [5], we proposed using the historical project information
to assess the claimed benefits of code maintenance tools and
strategies. We presented the Development Replay (DR) ap-
proach which reenacts the changes stored in source control
repositories using a proposed tool or strategy. We presented
a case study where the DR approach is used to empiri-
cally assess and compare the effectiveness of several not-yet-

existing tools which promise to assist developers in propa-
gating code changes. The approach is illustrated through a
case study for five large open source systems with over 40
years of development history.

3.3 Using Software Repositories to Support
Managers

Managers of large projects need to prevent the introduction
of faults, ensure their quick discovery, and their immediate
repair while ensuring that the software can evolve grace-
fully to handle new requirements by customers. Moreover,
managers endeavor with varying degrees of success to wisely
allocate their limited testing and development resources to
the most appropriate parts of the code. Bug prediction
and resource allocation issues become non-trivial challenges
which managers must face and resolve successfully. Unfor-
tunately, in many cases managers’ attempts to resolve these
issues are based on ad-hoc techniques and rough approxima-
tions. Their success depends on their intuition, experience
and chance.

To assist managers in predicting the occurrence of faults
and improving the reliability of software systems, we used
sound mathematical concepts from information theory, such
as Shannon’s Entropy, to present a novel view of complexity
in software [4]. We proposed a complexity metric that is
based on the process followed by developers to produce the
code (the code development process) instead of on the code
or the requirements. We conjectured that: A chaotic code
development process negatively affects its outcome, the soft-
ware system, through the occurrence of faults. We validated
our conjecture empirically through case studies using data
derived from the development process history of six large
projects with over 60 years of development history. Our en-
tropy measurements have statistically significant better ac-
curacy in predicting the occurrence of faults than simply
using the number of prior modifications to a subsystem or
prior faults in it as predictors of faults. Using our complex-
ity metric, managers are likely to avoid delays and faults in
a project over time.

To assist managers in coping with the challenges of allocating
their limited resources effectively, we presented an approach
(The Top Ten List) which highlights the ten most suscepti-
ble subsystems to have a fault [7]. The list is updated dy-
namically as the development of a system progresses. Man-
agers can focus testing resources to the subsystems suggested
by the list. The Top list approach holds a lot of promise
and value for practitioners, it provides a simple and accu-
rate technique to assist them in managing their resources as
they maintain large evolving software systems. In contrast
to count based techniques which focus on predicting an ab-
solute count of faults in a system over time, or classification
based techniques which focus on predicting if a subsystem
is fault prone or not, we focus on predicting the subsystem
that are most likely to have a fault in them in the near fu-
ture. For example, even though a subsystem may not be
fault prone or may only have a few number of predicted
faults, it may be the case that a fault will be discovered in it
within the next few days or weeks. Or in another case, even
though a fault counting based technique may predict that a
subsystem has a large number of faults, the faults may be
dormant faults that are not likely to cause concerns in the

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

near future. If we were to draw an analogy to our work and
rain prediction, our prediction model focuses on predicting
the areas that are most likely to rain in the next few days.
The predicted rain areas may be areas that are known to be
dry areas (i.e. not fault prone) or may be areas which aren’t
known to have large precipitation values (i.e. low predicted
faults).

4. CONTRIBUTIONS
The conceptual contributions of this dissertation center around
the development of techniques and approaches to demon-
strate the value of mining software repositories in assisting
managers and developers in performing a variety of software
development, maintenance, and management activities. The
technical contributions of this dissertation focus on the devel-
opment of tools and the invention of techniques to robustly
automate the mining process for large long lived software
systems written in industrial languages such as C. The em-
pirical contributions of this dissertation are the application
of all proposed techniques and approaches on several long
lived large open source projects. The particular contribu-
tions of this dissertation, notably those that have been pub-
lished, include the following:

1. Evolutionary Software Extractors: We introduced the
idea of an evolutionary extractor and advocated the need
for such extractors to study and mine the evolutionary his-
tory of software projects from historical repositories such
as source control repositories. We presented the implemen-
tation challenges and techniques for an evolutionary code
extractor for the C language (C-REX).

2. Source Sticky Notes: We proposed the benefits of at-
taching historical information to each dependency in a soft-
ware system. We showed that these notes are useful in
speeding up and automating the software architecture un-
derstanding process.

3. Development Replay Approach: The DR approach
reenacts the development history of a software project us-
ing the changes stored in source control repositories. This
approach permits us to empirically assess the effectiveness
of not-yet-adopted or not-yet-existing code maintenance
tools and strategies.

4. Software Development Chaos: We conjectured that a
chaotic or complex development process negatively affects
its outcome, the software system. We proposed and vali-
date the benefits of a complexity metric that is based on
the process followed by software developers in order to pro-
duce the code instead of on the code or the requirements.

5. Top Ten List: We introduced the notion that not all bugs
are created equal, instead managers are more concerned
about bugs that are likely to occur in the near future ver-
sus faulty code that is not likely to have faults appear
in it for some time. We proposed metrics and models to
measure traditional bug prediction techniques using such
notion and ideas.

5. CONCLUSIONS
Our work contributes to software engineering and mainte-
nance by showing that software repositories contain a wealth
of useful information that could be easily mined and inte-
grated with several software development practices in order

to assist developers and managers. We hope this work will
encourage academic researchers to explore integrating his-
torical information in their work, and will entice practition-
ers to consider the potential of their repositories which are
currently mainly used for static record keeping purposes.

The field of Mining Software Repositories is maturing thanks
to the rich, extensive, and easily accessible repositories for
open source projects. We believe the field is likely to take
a central and important role in supporting software devel-
opment practices and software engineering research. During
the course of this dissertation, we proposed and co-organized
workshops on Mining Software Repositories (MSR) at the
International Conference on Software Engineering (ICSE).
The workshops (http://msr.uwaterloo.ca) were very success-
ful and were the most attended workshops at ICSE for the
last three years. We as well co-edited on the MSR topic a
special Issue of the IEEE Transactions on Software Engi-
neering (TSE). The issue had the largest submissions in the
history of the TSE. It received over 15% of all the submis-
sions to the TSE in 2004.

6. REFERENCES
[1] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,

S. Zhang, and A. Michail. CVSSearch: Searching
through source code using CVS comments. In
Proceedings of the 17th International Conference on
Software Maintenance, pages 364–374, Florence, Italy,
2001.

[2] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In
Proceedings of the 14th International Conference on
Software Maintenance, Bethesda, Washington D.C.,
Nov. 1998.

[3] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy.
Predicting fault incidence using software change history.
IEEE Transactions on Software Engineering,
26(7):653–661, 2000.

[4] A. E. Hassan and R. C. Holt. Studying The Chaos of
Code Development. In Proceedings of the 10th Working
Conference on Reverse Engineering, Victoria, British
Columbia, Canada, Nov. 2003.

[5] A. E. Hassan and R. C. Holt. Predicting Change
Propagation in Software Systems. In Proceedings of the
20th International Conference on Software
Maintenance, Chicago, USA, Sept. 2004.

[6] A. E. Hassan and R. C. Holt. Using Development
History Sticky Notes to Understand Software
Architecture. In Proceedings of the 12th International
Workshop on Program Comprehension, Bari, Italy, June
2004.

[7] A. E. Hassan and R. C. Holt. The Top Ten List:
Dynamic Fault Prediction. In Proceedings of the 21st
International Conference on Software Maintenance,
Budapest, Hungary, Sept. 2005.

[8] A. Mockus, D. M. Weiss, and P. Zhang. Understanding
and predicting effort in software projects. In
Proceedings of the 25th International Conference on
Software Engineering, pages 274–284, Portland, Oregon,
May 2003.

[9] G. C. Murphy, D. Notkin, and K. Sullivan. Software
Reflexion Models: Bridging the Gap Between Source
and High-Level Models. In Proceedings of the Third
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 18–28, New York, NY,
Oct. 1995. ACM.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

