
“Cloning Considered Harmful” Considered Harmful

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)

David R. Cheriton School of Computer Science, University of Waterloo
{cjkapser, migod}@uwaterloo.ca

Abstract

Current literature on the topic of duplicated (cloned)
code in software systems often considers duplication
harmful to the system quality and the reasons commonly
cited for duplicating code often have a negative
connotation. While these positions are sometimes
correct, during our case studies we have found that this is
not universally true, and we have found several situations
where code duplication seems to be a reasonable or
even beneficial design option. For example, a method of
introducing experimental changes to core subsystems is to
duplicate the subsystem and introduce changes there in a
kind of sandbox testbed. As features mature and become
stable within the experimental subsystem, they can then
be introduced gradually into the stable code base. In this
way risk of introducing instabilities in the stable version is
minimized. This paper describes several patterns of cloning
that we have encountered in our case studies and discusses
the advantages and disadvantages associated with using
them.

1. Introduction

It is believed that most large software systems contain
a non-trivial amount of redundant code. Often referred to
as code clones, these segments of code typically involve
10–15% of the source code [24, 25]. Code clones can
arise through a number of different activities. For example,
intentional clones may be introduced through direct “copy-
and-pasting” of code. Unintentional clones on the other
hand may be the manifestation of programming idioms
related to the language or libraries the developers are using.

In much of the literature on the topic [2, 7, 12, 21, 22,
27, 28], cloning is considered harmful to the quality of the
source code. Code clones can cause additional maintenance
effort. Changes to one segment of code may need to
be propagated to several others, incurring unnecessary
maintenance costs [15]. Locating and maintaining these

clones pose additional problems if they do not evolve
synchronously. With this in mind, methods for automatic
refactoring have been suggested [4, 7], and tools specifically
to aid developers in the manual refactoring of clones have
also been developed [19].

There is no doubt that code cloning is often an indication
of sloppy design and in such cases should be considered to
be a kind of development “bad smell”. However, we have
found that there are many instances where this is simply not
the case. For example, cloning may be used to introduce
experimental optimizations to core subsystems without
negatively effecting the stability of the main code. Thus,
a variety of concerns such as stability, code ownership, and
design clarity need to be considered before any refactoring
is attempted; a manager should try to understand the reason
behind the duplication before deciding what action (if any)
to take. 1

This paper introduces eight cloning patterns that we have
uncovered during case studies on large software systems,
some of which we reported in [23, 24, 25]. These
patterns present both good and bad motivations for cloning,
and we discuss both the advantages and disadvantages of
these patterns of cloning in terms of development and
maintenance. In some cases, we identify patterns of cloning
that we believe are beneficial to the quality of the system.
From our observations we have found that refactoring may
not be the best solution in all patterns of cloning. Tools
need to be developed to aid the synchronous maintenance
of clones within a software system, such as Linked Editing
presented by Toomim et al. [29].

This paper introduces the notion of categorizing high
level patterns of cloning in a similar fashion to the
cataloging of design patterns [14] or anti-patterns [8].
There are several benefits that can be gained from
this characterization of cloning. First, it provides a
flexible framework on top of which we can document
our knowledge about how and why cloning occurs in

1A simple (but trivial) example is the title of this paper. Although there
is a kind of duplication in the wording, no ”refactoring” of the title would
carry the same connotations as the original statement.



software. This documentation crystallizes a vocabulary
that researchers and practitioners can possibly use to
communicate about cloning.

As a second contribution, this categorization is a
first step towards formally defining these patterns to
aid in automated detection and classification. These
classifications can then be used to define metrics concerning
code quality and maintenance efforts. Automatic
classifications will also provide us with better measures
of code cloning in software systems and severity of the
problem in general.

The rest of this paper is organized as follows:
Section 2 provides a brief background concerning code
cloning, Section 3 introduces a template to describe
code cloning patterns and then discusses eight patterns
we found in software systems, Section 4 discusses the
implications of code cloning patterns on maintenance
and tool requirements, Section 5 describes work that has
contributed to the understanding of code cloning, and in
Section 6 we discuss our conclusions and future work.

2. Code Cloning

Code cloning is considered a serious problem in
industrial software [1, 2, 7, 9, 12, 21, 22, 27, 28]. It
is suspected that approximately 10%–15% of many large
systems is part of duplicated code [2, 12, 24, 25], and
it has been documented to exist at rates of over 50% of
the effective lines of code (ELOC) in a particular COBOL
system [12]. The literature on the topic has described many
situations that can lead to the duplication of code within
a software system [2, 7, 21, 22, 27, 28]. Many of these
can be considered ill intentioned cloning. For example,
developers may duplicate code because the short term cost
of forming the proper abstractions may outweigh the cost of
duplicating code. Developers may also duplicate code when
they do not fully understand the problem, or the solution,
but they are aware of code that can provide some or all of
the required functionality. Clones can also be introduced as
a side effect of programmers’ memories; programmers may
repeat a common solution, unknowingly introducing clones
into the software system [7].

Duplicates can also be introduced with good intentions.
Duplicating code can, in some situations, be used to
keep software architectures clean and understandable.
Duplicates can also be used to keep unreadable,
complicated abstractions from entering the system. Lack
of expressiveness of a given programming language may
lead to the use of “boiler-plated” solutions for particular
problems [30], or even source code generation. This kind
of technique is common in COBOL development, for
example. In these cases, the use of cloning is typically well
understood by the developers, and the aim is to prevent

errors by re-using trusted solutions in new contexts.
There are several problems associated with cloning.

Code cloning can lead to unnecessary increase in code size
[2, 21]. Cloning code can lead to unused, or “dead”, code
in the system that left unchecked can cause problems with
code comprehensibility, readability, and maintainability
over the life time of the software system [21]. Maintenance
efforts can be increased when bugs have to be fixed
multiple times, and these changes could be prone to errors.
Clones of code that is not well understood can introduce
bugs. For example, variables may be shared and modified
unknowingly [21]. Program comprehensibility can be
affected by the increased code size, as well as the need to
understand the differences between the duplicates.

Code clones can have beneficial effects on the source
code. Code clones can be used to reduce complexity in
source code in the cases where abstractions are difficult to
form. As a result, duplicates may be easier to understand
and modify than a solution that employs abstraction, as the
study performed by Toomim et al. [29] suggests. Also,
risk to the the stability of the code can be avoided by
cloning rather than creating a new abstraction. Cordy notes
that financial institutions consider code quality the most
important concern when maintaining software [11]. The
cost of errors in software can dwarf software maintenance
costs. Fixing or modifying an abstraction can introduce
risks of breaking existing code and requires that any
dependent code be extensively tested, a process that is both
costly and time consuming. Cloning is a common method
of risk minimization that allows code to be maintained
and modified separately, containing the risk of introducing
errors to a single system or module [11]. Cloning can
be useful in exploratory development, where the reuse of
behavior can be used to fast track development of a new
feature but the eventual path of evolution is too unknown to
use abstractions.

3. Patterns of Cloning

During our investigations of cloning in large software
systems [23, 24, 25], we found several recurring patterns
of cloning, or rather ways in which developers duplicated
behavior. These patterns are defined by what is duplicated
and why, and to some extent how the duplication is
done. More specifically, the patterns we consider are both
cloning of large architectural artifacts, such as files or
subsystems, and finer grained cloning, such as functions
or code snippets. The reasons why developers use these
patterns range from difficulty in abstracting the code to
minimizing the risk of breaking a working software system.
When we discuss how the duplication is performed, we
describe what the new artifacts will be rather than the tools
that are used to perform the duplication. The information



described in these patterns is drawn from the case studies we
have performed and have not yet been formally validated.

To describe our patterns, we use the following template:

• Name. Describes the pattern in a few words.

• Motivation. Why developers might use this cloning
pattern rather than an appropriate abstraction.

• Advantages. Description of the benefits of this pattern
of cloning compared to other methods of reusing
behavior.

• Disadvantages. Description of the negative impacts of
this pattern of cloning.

• Management. Advice on how this type of cloning can
be managed.

• Long term issues. Issues to be aware of when
deciding to use a cloning pattern as a long term
solution.

• Structural manifestations. How this type of cloning
pattern occurs in the system. Describes the scope and
type of code copied, as well as the types of changes
that are expected to be made.

• Examples. Examples in real systems. In this paper,
the examples are drawn from the GNU spreadsheet
application Gnumeric 1.2.12, the relational database
management system Postgresql 8.0.1, the web server
Apache httpd 2.0.49, and the Java mail client Columba
1.2.

We have divided the eight patterns into three related
groups: Forking, Templating, and Customization. This
partitioning is done based on the high level motivation for
the cloning pattern. Forking is cloning used to bootstrap
development of similar solutions, with the expectation that
evolution of the code will occur somewhat independently,
at least in the short term. A major motivation for forking
is to protect system stability. In these types of cloning,
the original code is copied to a new source file and then
independently developed. Templating is used as a method
to directly copy behavior of existing code but appropriate
abstraction mechanisms are unavailable. Templating is used
when there is a common set of requirements shared by
the clones, such as behavior requirements or the use of
a particular library. When these requirements change, all
clones must be maintained together. Customization occurs
when currently existing code does not adequately meet a
new set of requirements. The existing code is cloned and
tailored to solve this new problem.

3.1. Forking

Forking patterns often involve larger portions of code
with the intention that the resulting duplicates will need to
evolve independently. The duplication is often used as a
“springboard” from which to start development and works
well in situations where the commonalities and difference
of the end solutions are not clear. At a later time when the
new code has matured, it may be reasonable to refactor any
remaining duplicates. This section describes three examples
of forking patterns that we have seen in our case studies.

3.1.1. Hardware variations.

Name. Hardware variations
Motivation. When creating a new driver for a hardware
family, a similar hardware family may already have an
existing driver. However, there are often non trivial
differences in the functionality/features between families
of hardware, making it difficult and risky to modify the
existing code while preserving compatibility for the original
target.
Advantages. The risk of changing the existing driver is
especially high in this situation as testing the driver on
older hardware devices can be difficult and time consuming.
Cloning the existing driver prevents the need for this type of
testing.
Disadvantages. In addition to the general maintenance
issues such as propagating bug fixes, cloned drivers may
introduce unexpected feature interactions, in particular in
the realm of resource management. Code growth can be a
particular issue with this pattern of cloning because entire
files or subsystems are copied.
Management. Groups of cloned drivers should be clearly
identified, and potential bug fixes should be investigated
within the group.
Long term issues. Dead code can slowly creep into the
system unless care is taken to monitor which drivers are still
actively supported.
Structural manifestations. Drivers are commonly
packaged into a single file for simplicity of use within the
system. Developers usually copy the entire file, and the
duplicate is then modified to match the new device.
Examples. The Linux SCSI driver subsystem has
several examples of this pattern of cloning [16]. In
one example, the file NCR5380.c was copied to the
file atari NCR5380.c and adapted for the Atari
hardware device. This new file was then cloned as
sun3 NCR5380.c to be adapted to the Sun 3 platform.
Another example of driver cloning is the file esp.c which
has been duplicated and modified in NCR53C9x.c. What
is interesting in the Linux SCSI drivers is that the authors
duplicating the new file explicitly reference the file they



have duplicated, making the chain of replications easily
verified.

3.1.2. Platform variation.

Name. Platform variation
Motivation. When porting software to new platforms,
low level functionality responsible for interaction with the
platform will need to change. Rather than writing portable
code such as a virtualization layer, it is sometimes easier,
faster, and safer to clone the code and make a small number
of platform specific changes. In addition, the complexity
of the possibly interleaved platform specific code may be
much higher than several versions of the cloned code,
making code cloning a better choice for maintenance.
Advantages. Code complexity that is inherent to platform
optimized code that is interleaved is avoided. Additionally,
stability for currently supported platforms is maintained. As
platforms are likely to evolve independently, maintaining
support for one platform will not effect the stability of the
code for other platforms.
Disadvantages. The code will evolve along two
dimensions: the requirements of the software and the
support of the platform. Bug fixes may be difficult to
propagate as it may not be clear how or if the bugs are
present in each version of the code. Changes to the interface
of the platform specific code become more problematic
because these changes will need to be performed across
several versions of the library.
Management. The platform specific interaction should be
factored out as much as possible in order to minimize the
amount of cloning necessary. When cloning the code the
variations should be well documented in order to facilitate
bug fix propagation.
Long term issues. As groups of platform specific code
clones grow, the interface that they support will become
more rigid and difficult to change because of the number
of places where changes will need to be made. In order
to guarantee consistent behavior on supported platforms it
will be vital to ensure that visible behavior from each of the
clones remains consistent.
Structural manifestations. Platform specific variations
often exist in the same subsystem. They often manifest as
either cloned files or subsystems.
Examples. Platform variation cloning is apparent in
several subsystems within Apache’s portable library, the
Apache Portable Runtime (APR). This subsystem is a
portable implementation of functionality that is typically
platform dependent, such as file and network access. Two
examples of this type of cloning are the fileio and
threadproc subsystems. In these two subsystems, there
are four directories: netware, os2, unix, and win32.
threadproc has an additional subsystem beos. All of
these directories share some cloning that is easily detected

by a clone detection tool, but there are also duplicates that
are sufficiently different that clone detection tools do not
detect the similarity. In these cases, changes are typically
characterized as insertions of additional error checking or
API calls. With these changes, overall structure remains
the same, and in several cases cloned documentation exists
providing further information about the cloning.

3.1.3. Experimental variation.

Name. Experimental variation
Motivation. Developers may wish to optimize or extend
pre-existing code but do not want to risk system stability.
By forking the existing code, users can have the choice to
run the experimental optimized code or the trusted stable
code.
Advantages. System stability is protected while still
allowing users access to leading edge development.
Changes made to the experimental fork can be merged with
or replace the stable version at a later time.
Disadvantages. Merging code at a later point may
be difficult if the stable version continues to evolve
independently.
Management. Care should be taken to maintain the
experimental version closely with the stable version.
Changes to the external behavior of the existing stable
module will need to be monitored and introduced in
the duplicated experimental code in order to maintain a
consistent interface.
Long term issues. As the original and duplicate
code evolves, consistent maintenance may become more
difficult. Documentation of the differences should be
maintained in order to aid program comprehension.
Structural manifestations. The cloning pattern will appear
as a cloned file, subsystem or class. It may even be labeled
as an experimental development effort, as in the case of
several Apache modules [25].
Examples. An example of experimental variation can
be found in the Apache httpd web server. In the multi-
process management subsystem, the subsystem worker
was cloned multiple times as threadpool and leader
[25]. The cloned subsystems are experimental variations on
worker designed to provide better performance. Because
they are separated from worker, the web server remains
stable while optimizations are being developed.

3.2. Templating

Templating occurs when the desired behavior is already
known and an existing solution closely satisfies this need.
Often templating is a matter of parametrization, as opposed
to the complex control flow that might be required for
abstraction when forking patterns are used instead. For
example, one might use this pattern of cloning to achieve



the same behavior for floats and shorts in the C
programming language. In this case, the expected changes
to the code are only the types. When developers use cloning
patterns of this type, the evolution of the clones is often
expected to be closely related, especially in the case of
boiler-plating. In the subsections that follow we describe
three examples of templating patterns.

3.2.1. Boiler-plating due to language in-expressiveness.

Name. Boiler-plating due to language in-expressiveness
Motivation. Due to language constraints, reusing trusted
and tested code may be difficult to achieve. This can occur
for example when polymorphism cannot be used. This
form of cloning is common in software systems that are
developed in the COBOL language.
Advantages. Can make reuse of trusted code possible.
Allows for consistent behavior for related concepts,
improving program comprehensibility.
Disadvantages. Increased maintenance effort. These code
clones will be expected to evolve very closely, and any
maintenance efforts will very likely require n times the
effort for n clones.
Management. Documentation that makes an explicit link
to all duplicates is important. Tools and methodologies such
as Linked Editing [29] should be used to ensure consistent
changes are made to all duplicates. Another approach to
managing these clones is to use generated code at build time
[20], making the duplicate exist only when the source code
is compiled.
Long term issues. If maintenance is not performed
rigorously, the duplicated code may become unintentionally
different making debugging and testing difficult.
Structural manifestations. Typically these duplicates are
closely located in the software system, either in the same
file or in the same subsystem, with names that are also very
similar.
Examples. Boiler-plating can be readily found in most
software systems. An example of where this pattern
was used in Postgresql is the contrib/btree gist
subsystem where there is a great deal of duplication
whose only modification is the data type of the procedure
parameters.

3.2.2. API/Library protocols.

Name. API/Library protocols
Motivation. Often the use of particular application program
interfaces (APIs) require ordered series of procedure calls
to achieve desired behaviors. For example, when creating
a button using the Java SWING API, a common order of
activities is to create the button, add it to a container, and
assign the action listeners. Similar orderings are common
with libraries as well. The order of activities to successfully
set up a network socket in C on Unix systems is well

established. Developers will often copy-and-paste these
sequences of communication and then parametrize them
appropriately to be used for their particular problem.
Advantages. Novice users of the API or library can learn
from other code. Experienced users can reduce coding
effort by quickly duplicating and modifying the code. The
duplicated code can flexibly be changed, and often the size
of the duplication may not warrant further abstractions.
Disadvantages. Developers may be duplicating buggy or
fragile code, degrading the quality of their own code.
Management. Locate prevalent cloning of this type
and extend the API or library in use with appropriate
abstractions. For code clones of this type, rigorously review
the duplicates to ensure the duplicated code is high quality.
Long term issues. Changes to the API will require
changes in multiple sites, and these changes may be
problematic in terms of consistency and testing. Using
the appropriate abstractions may decrease the maintenance
effort by centralizing the required changes.
Structural manifestations. These duplicates are typically
scattered throughout the source code, and are small in size.
Examples. In the mail client Columba, this pattern is
readily found in the GUI code where buttons are added.
This sequence of three operations that create a button, set
its action listener, and set its action command is present
throughout the system where GUI code is present.

3.2.3. General language or algorithmic idioms.

Name. General language or algorithmic idioms
Motivation. Programming idioms are clear and concise
implementations of particular solutions. These idioms
tend to be self documenting for language experts as they
provide information as to how and why the implementation
is done in this way. Idioms are commonly discussed,
books have been written on this specific topic [10], and
there is a no shortage of web discussions either. They can
be conventional wisdom in the programming community,
such as checking the return after allocating memory in C
programming, or personal dialects of individual developers.
Advantages. Idioms provide structured, standardized
solutions to common problems. These solutions become
self documenting, improving program comprehensibility.
Disadvantages. Inconsistencies or faulty implementations
of programming idioms may be easily overlooked.
Incorrect or inefficient idioms (or anti-idioms) can also be
duplicated, degrading the quality of the code.
Management. Anti-idioms should be located and removed.
Correct idioms should be located and verified for consistent
implementation.
Long term issues. None.
Structural manifestations. These idioms tend to be
distributed throughout the code, as code snippets.



Examples. A common idiom in Apache is how a pointer to
a platform specific data structure is set in the memory pool.
At least 15 occurrences of this idiom can be found in the
APR subsystem. First, the code checks if the data structure
containing the pointer exists in the memory pool, and if not
space is allocated for it, then the platform specific pointer
is assigned. This idiom exists because the APR library uses
similarly defined data structures to point to platform specific
ones, pthreads for example. These structures also store
platform specific data that is relevant to the concept, such
as the exit status of the thread. A slight variation to this
idiom is that in some cases the code checks if the memory
pool exists, and returns an error if it does not. This is an
interesting variation as we would expect all copies to behave
in this way.

3.3. Customization

Customization often arises when code solving a very
similar problem to the current problem exists, but additional
or differing requirements create the need for extension or
modification. For a variety of reasons, such as concerns
about system stability or code ownership, the existing code
can not be modified to encompass this additional problem.
In these cases, code may be cloned and customized to suit
the specific development task. In this section we describe
two examples of customization patterns.

3.3.1. Bug workarounds.

Name. Bug workarounds
Motivation. Due to code ownership issues or unacceptable
exposure to risk, it may be difficult to fix a bug at the source,
so work arounds may be necessary. Copying the code and
fixing the bug in order to overload the broken code may
be the only available solution. In other situations, it may
be possible to guard the points where the buggy code is
used. This guard is then copied as part of the usage of the
procedure.
Advantages. The problem can be solved without requiring
retesting of other code. This solution can allow for progress
in development, although it should only be a temporary
measure.
Disadvantages. Source of the bug is not addressed, causing
further replication of code or, even worse, new code may
not even address the existence of the bug. Also, changes
to the behavior of the buggy code may cause confusion in
the maintenance process if this pattern of duplication is not
made explicit.
Management. Once the original bug is fixed, remove any
duplicates. Planning for this will minimize issues for clone
removal.
Long term issues. The code clone may not be removed
when bug is fixed. This forgotten fix may confuse

maintenance efforts later on.
Structural manifestations. These clones can appear as
locally overloaded procedures or methods, or as procedures
with very similar names to the original source. Cloned
guarding statements will be duplicated at points where the
buggy source code is used.
Examples One of the authors (Godfrey) wrote a Java fact
extractor that was built around the internals of Sun’s javac
compiler. On finding a small bug in the javac source code,
he cloned the offending code into a descendant class and
fixed the bug there. Because he didn’t have write access to
the class that contained the offending method, he could not
make bug fix directly in the javac code-base (he created a
bug report instead).

In Postgresql, we see an example of duplication of a
guard for the event of an error due to bugs. In this case,
the source code is dependent on MinGW, an external
set of libraries required for platform compatibility. This
library has a bug in it that has not been fixed for the
current release. Because of this, the Postgresql developers
duplicated a three line solution three times in three different
files: src/backend/commands/tablespace.c,
src/port/copydir.c,
src/backend/access/transam/xlog.c.

3.3.2. Replicate and specialize.

Name. Replicate and specialize
Motivation. As developers implement solutions, they may
find code in the software system that solves a similar
problem to the one they are solving. However, this code
may not be the exact solution, and modifications may be
required. While the developer could generalize the original
code, this may have a high cost in testing and refactoring
in the short term. Code cloning may appear to be a more
attractive alternative, and is commonly used in practice to
minimize costs associated with risk [11].
Advantages. Reduces immediate costs in testing and
refactoring. Additionally, the high cognitive cost of
developing the abstraction is avoided [29].
Disadvantages. Long term costs of finding and maintaining
these duplicates could out-weigh the short term gains.
Management. If an appropriate abstraction can be made,
deprecating the original code and transitioning to the
abstraction may defer testing costs and protect system
stability. If the appropriate abstractions can not be made,
explicitly linking the code clones through documentation or
tool support will ensure consistent maintenance.
Long term issues. Duplicated code can over time
become more entrenched, with more of the software system
dependent upon it. Over time, the cost of refactoring the
code may rise. Differences in the code may make locating
duplicates difficult, making maintenance of clones more
costly.



Structural manifestations. These code clones are often
snippets or procedures located near each other, but can be
more widely distributed as well. In some cases these clones
can be particularly hard to detect due to the changes that
have been made. Often the copied code contains control
structures, suggesting that developers use duplication to
reuse complex logic, an observation also noted by Kim et
al. [26].
Examples This pattern is the most common type of
cloning. In one example in Gnumeric, we see this
pattern in use for developing the procedures that
build the locale and character encoding selection
menus. The procedures can be found in the files
src/widgets/widget-charmap-selector.c
and src/widgets/widget-locale-selector.c.
The control flow of both procedures is very similar.
However, how the items are chosen to be added to the menu
differs, causing a minor change and addition of several
lines. Another small difference is the way in which the
menu title is made near the end of the procedure. In addition
to these customizations, the data type containing the list of
entities is also different, performed as a parametric change.

4. Discussion

In describing the patterns of code cloning, we see
different management strategies that should be considered.
For example, experimental variation requires developers
to monitor changes to the external interface of a cloned
subsystem to make decisions on whether or not to propagate
changes to the duplicated code. On the other hand, boiler-
plating requires close synchronization of the maintenance
effort, preferably through an automated approach such
as source code generation. These varying maintenance
strategies require a variety of different tools.

In the case of templating patterns, as mentioned above,
it is clear that there is a need for synchronous editing,
such as that suggested in [29], to manage clones where
evolution between the duplicates should be tightly coupled
but abstraction is not possible. Even in the cases where
abstractions are possible, such as in the case of API
and Library Protocols, Toomim et al. [29] provides some
evidence to suggest that there is less cognitive load
to manage the duplicated code, rather than the proper
abstraction, if Linked Editing is used.

In cases of duplication where the evolution of the
duplicates may not be so tightly coupled, as in the
cases of forking patterns, architectural and historical
dependencies of cloning can guide developers to related
points in the software system that should be taken into
consideration during a maintenance operation. In [23, 24,
25] the authors used cloning relationships visualized as
architectural relationships as aids to locate several examples

of these forking patterns.
In addition to locating forking cloning patterns, it is

important that development tools also explicitly outline the
similarities and difference in the code. During our case
studies, we noted that while it was easy to see similarities
in code, it was far more difficult to find and understand the
differences in the code. Identifying the differences in the
code clones is very important as it effects the decisions of
how and when to propagate changes to duplicated code.

In the cases of the customization patterns, the tool
requirements are a combination of the forking and
templating patterns. In extreme cases of customization,
automated tool support may not be possible for editing,
and may not be desirable. Semi-automated approaches
for “patching” code clones may be necessary, especially in
cases of large groups of duplicated code. Such a tool would
iterate over all candidate code clones and selectively patch
clones according to human (expert) decisions.

While we believe that not all clones require refactoring
of abstractions, we also believe there are situations that
warrant the effort. In cases where code is directly copied
to duplicate behavior, such as in sibling classes of an
object-oriented program, refactorings should be performed
if the language supports this. In situations where the
behavior of the clones is similar but not the same, the
effect of the costs of refactoring, such as effects on program
comprehension and exposure to risk, should be measured
against the expected gain in maintainability or extendability
of the system.

5. Related Work

Cataloging of software engineering principles and
behaviors is not a new idea. Other works have cataloged
common scenarios that arise in software development and
maintenance. Zou et al. [18] describe several scenarios
in which maintenance activities lead to new functions in a
software system. Fowler et al. documented approximately
70 refactorings [13]. Refactorings are patterns of behavior
preserving restructuring of source code used to eliminate
bad design or source code entities, including duplicated
code. Gamma et al. have described many design patterns
to aid in making more flexible and reusable code [14].

Clone classification schemes have been previously
suggested, usually based on the degree of similarity of
segments of code and also the type of differences [3, 28]. In
the work presented by Mayrand et al. [28] and Balazinksa
et al. [3] these classifications are limited to function clones
only. In previous work [23, 24, 25] the authors present
a classification scheme based on locality, size, code type,
and similarity. The classification includes clones varying
in scope from functions down to code blocks. This
classification scheme was used to aid the analysis of cloning



in large software systems. Balazinska et al. [5] used a
classification of function clones to produce software aided
re-engineering systems for code clone elimination.

The classification of cloning presented here differs from
the above categorizations in both the type of categorization
and the goal of the work. In this paper, cloning is
categorized primarily from motivational perspective, while
other categorizations focus on the structural properties of
the clones. The goal of this paper is not to categorize
clones for purposes of refactoring but to document the
types of cloning that occur in software to aid the general
understanding of how cloning is done in practice.

Several case studies on cloning in software systems
have contributed to the source of information for compiling
these cloning patterns. Clone detection case studies on
the Linux kernel have been reported in [1, 9, 16]. In [9],
Casazza et al. use metrics based clone detection to detect
cloned functions within the Linux kernel. The conclusions
of this study were that in general the addition of similar
subsystems was done through code reuse rather than code
cloning, and more recently introduced subsystems tended
to have more cloning activity. Antoniol et al. [1] did
a similar study, evaluating the evolution of code cloning
in the Linux, concluding that the structure of the Linux
kernel did not appear to be degrading due to code cloning
activities. In [17] a preliminary investigation of cloning
among Linux SCSI drivers was performed. The authors
recently investigated cloning in several large software
systems [23, 24, 25]. These studies provide insight into
the types of code that are cloned and why, in particular
[25] describes an in-depth investigation into the sources of
duplication in the Apache httpd web server.

Cordy reports on the use of code cloning as a method
of minimizing and containing risk during maintenance and
extensions of financial software [11]. Often occurring in
the form of customization, developers may use cloning to
reuse the design of an existing application. Cloning is also
used to separate the dependencies of custom views on data
that several modules or applications may have. Cloning
in this way prevents the introduction of bugs into working
code, and confines testing to a smaller subset of source
code. Cordy also suggests that developers may not want
to universally propagate bug fixes across clones as this may
break dependent code [11].

Jarzabek et al. [20] and Basit et al. [6] performed case
studies for reducing duplication in on the Java buffer classes
and the STL. In their studies, they used a meta-language
XVCL to reconstruct the code at compile time. In [20]
many clones existed because of language limitations and
were removed using templates. In [6] the STL made heavy
use of generics to reduce redundant code but redundant
code still existed in a form analogous to customization
and boiler-plating patterns where operators were modified.

Balazinska et al. [3] measured the number of clones
with various degrees of similarity, and found that exact
duplicates were the most common followed by duplication
with larger changes. The third and forth most prominent
groups appeared to be clones where the called methods have
been changed or a global variable has been changed. These
last two types are similar to a templating pattern.

Kim et al. studied how developers used copy-and-paste
features of the Eclipse IDE [26]. In this study, Kim et al.
noted that developers often use copy-and-paste to structure
and guide the task of extending a software system. For
example, they noted that developers will sometimes copy
a parent or sibling class to use as a template for writing a
new sibling class. Kim et al. also observed usage patterns
similar to the templating pattern noted here. Kim et al.
observed that developers used copy-and-paste to duplicate
control structures, similar to our Replicate and Specialize
pattern. The work presented here differs in that it focuses
on how duplicated code that persists in the source code is
used as part of a design decision.

6. Conclusions

Code cloning is often presented as a negative design
characteristic in software systems, usually attributed to the
limitations of the developers. Often referred to as a bad
“code smell”, many negative effects of code cloning have
been cited as reasons to remove code duplicates from source
code. During our case studies of large software systems, we
found that code cloning can often be used in a positive way.

In this paper we list several patterns of cloning that
are used in real software systems. In our descriptions of
these cloning patterns we discuss the pros and cons of
using cloning and suggest methods of managing these code
clones. We also discuss long term issues that may arise
and provide concrete examples of these cloning patterns in
real software systems. These insights provide evidence to
support the notion that clones can be a reasonable design
decision and that tools should be developed with long term
maintenance of duplicates in mind.

In the future we would like to identify more patterns
of cloning, and automatically identify these patterns in
order to aid developers in maintenance and refactoring
decisions. We would also like to identify the degree to
which these patterns exist in software systems as well as
occasions where using the cloning pattern was a successful
development method and when it was not.

References

[1] G. Antoniol, U. Villano, E. Merlo, , and M. D. Penta.
Analyzing cloning evolution in the linux kernel. In
Information and Software Technology 44(13), 2002.



[2] B. S. Baker. On finding duplication and near-duplication
in large software systems. In WCRE ’95: Proceedings of
the Second Working Conference on Reverse Engineering,
page 86, Washington, DC, USA, 1995. IEEE Computer
Society.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In Proceedings of the Sixth International
Software Metrics Symposium, pages 292–303, 1999.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Partial redesign of java software systems
based on clone analysis. In The Proceedings of the 6th.
Working Conference on Reverse Engineering, pages 326–
336, 1999.

[5] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Advanced clone analysis to support object-
oriented system refactoring. In Proceedings of the 7th.
Working Conference on Reverse Engineering, pages 98–107,
2000.

[6] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond
templates: a study of clones in the STL and some general
implications. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages
451–459, New York, NY, USA, 2005. ACM Press.

[7] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In ICSM ’98:
Proceedings of the International Conference on Software
Maintenance, page 368, Washington, DC, USA, 1998. IEEE
Computer Society.

[8] W. J. Brown, R. C. Malveau, H. W. M. (III), and
T. J. Mowbray. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. Wiley, 1st edition,
1998.

[9] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. D.
Penta. Identifying clones in the linux kernel. In First
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 92–100. IEEE Computer Society Press,
2001.

[10] J. O. Coplien. Advanced C++ Programming Styles and
Idioms. Addison Wesley Professional, 1st edition, 1992.

[11] J. R. Cordy. Comprehending reality - practical barriers to
industrial adoption of software maintenance automation. In
IWPC, pages 196–206. IEEE Computer Society, 2003.

[12] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Proceedings ICSM’99: International Conference on
Software Maintenance, pages 109–118. IEEE, 1999.

[13] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1st edition, 1999.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1st edition, 1995.

[15] R. Geiger, B. Fluri, H. Gall, and M. Pinzger. Relation
of code clones and change couplings. In Fundamental
Approaches to Software Engineering, 9th International
Conference, FASE 2006, volume 3922 of Lecture Notes in
Computer Science, pages 411–425. Springer, 2006.

[16] M. W. Godfrey, D. Svetinovic, and Q. Tu. Evolution,
growth, and cloning in Linux: A case study. A
presentation at the 2000 CASCON workshop on
’Detecting duplicated and near duplicated structures
in largs software systems: Methods and applications’, on
November 16, 2000, chaired by Ettore Merlo; available at
http://plg.uwaterloo.ca/˜migod/ papers
/cascon00-linuxcloning.pdf.

[17] M. W. Godfrey and Q. Tu. Evolution in open source
software: A case study. In Proceedings of the 2000
International Conference on Software Maintenance, 2000.

[18] M. W. Godfrey and L. Zou. Using origin analysis to
detect merging and splitting of source code entities. IEEE
Transactions on Software Engineering, 31(2), 2005.

[19] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries:
Refactoring support environment based on code clone
analysis. In The 8th IASTED International Conference on
Software Engineering and Applications(SEA 2004), pages
222–229, 2004.

[20] S. Jarzabek and L. Shubiao. Eliminating redundancies
with a ”composition with adaptation” meta-programming
technique. In ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 237–246, New
York, NY, USA, 2003. ACM Press.

[21] J. H. Johnson. Substring matching for clone detection
and change tracking. In Proceedings of the International
Conference on Software Maintanence, pages 120–126,
1994.

[22] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A
multilinguistic token-based code clone detection system
for large scale source code. In Transactions on Software
Engineering 8(7), pages 654–670. IEEE Computer Society
Press, 2002.

[23] C. Kapser and M. W. Godfrey. Toward a taxonomy of clones
in source code: A case study. In Evolution of Large Scale
Industrial Software Architectures, 2003.

[24] C. Kapser and M. W. Godfrey. Aiding comprehension
of cloning through categorization. In Proc. of 2004
International Workshop on Principles of Software Evolution
(IWPSE-04), pages 85–94, 2004.

[25] C. J. Kapser and M. W. Godfrey. Supporting the analysis
of clones in software systems. Journal of Software
Maintenance and Evolution: Research and Practice,
18(2):61–82, 2006.

[26] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in oopl. In ISESE ’04: Proceedings of the
2004 International Symposium on Empirical Software
Engineering (ISESE’04), pages 83–92, Washington, DC,
USA, 2004. IEEE Computer Society.

[27] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept
detection. Autom. Softw. Eng., 3(1/2):77–108, 1996.

[28] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a software
system using metrics. In Proceedings of the International



Conference on Software Maintenance, pages 244–253. IEEE
Computer Society Press, 1996.

[29] M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In VLHCC ’04:
Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing (VLHCC’04),
pages 173–180, Washington, DC, USA, 2004. IEEE
Computer Society.

[30] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia.
Problems creating task-relevant clone detection reference
data. In Proceedings of the 10th Working Conference on
Reverse Engineering (WCRE-03), pages 285–294. IEEE
Computer Society Press, 2003.


