
A Language Independent Approach for Detecting Duplicated Code

Stéphane Ducasse, Matthias Rieger, Serge Demeyer
Software Composition Group, University of Berne

ducasse,rieger,demeyer@iam.unibe.ch
http://www.iam.unibe.ch/ scg/

Neubrückstrasse 10, CH-3012 Bern
Tel. +41 31 631 49 03, Fax +41 31 631 33 55

Abstract
Code duplication is one of the factors that

severely complicates the maintenance and evo-
lution of large software systems. Techniques for
detecting duplicated code exist but rely mostly on
parsers, technology that has proven to be brittle in
the face of different languages and dialects. In this
paper we show that is possible to circumvent this
hindrance by applying a language independent
and visual approach, i.e. a tool that requires no
parsing, yet is able to detect a significant amount
of code duplication. We validate our approach on
a number of case studies, involving four different
implementation languages and ranging from 256
K up to 13Mb of source code size.

Keywords: Software maintenance, code duplica-
tion detection, code visualization

1. Code Duplication Detection
Duplicated code is a phenomenon that occurs

frequently in large systems. The reasons why pro-
grammers duplicate code are manifold (see [9, 2]
for a thorough discussion) and include the follow-
ing reasons: (a) Making a copy of a code fragment
is simpler and faster than writing the code from
scratch. In addition, the fragment may already
be tested so the introduction of a bug seems less
likely. (b) Evaluating the performance of a pro-
grammer by the amount of code he or she produces
gives a natural incentive for copying code. (c) Effi-
ciency considerations may make the cost of a pro-
cedure call or method invocation seem too high a
price. In industrial software development contexts,
time pressure together with points (a) and (b) lead
to plenty of opportunities for code duplication.
Although code duplication can have its justifi-

cations, it is considered bad practice. Especially
during maintenance (estimated at 70% of the over-

all effort for producing a software system [16]) un-
justified duplicated code gives rise to severe prob-
lems: (a) If one repairs a bug in a system with du-
plicated code, all possible duplications of that bug
must be checked. (b) Code duplication increases
the size of the code, extending compile time and
expanding the size of the executable. (c) Code
duplication often indicates design problems like
missing inheritance or missing procedural abstrac-
tion. In turn, such a lack of abstraction hampers
the addition of functionality.
Techniques and tools for detecting duplicated

code are thus a highly desired commodity espe-
cially in the software maintenance community and
research has proposed a number of approaches
([1, 9, 14, 10, 2]) with promising results. How-
ever, the application of these techniques in an in-
dustrial context is hindered by one major obstacle:
the need for parsing. This is clearly stated in the
following quote:

“Parsing the program suite of interest
requires a parser for the language di-
alect of interest. While this is nominally
an easy task, in practice one must ac-
quire a tested grammar for the dialect of
the language at hand. Often for legacy
codes, the dialect is unique and the de-
veloping organization will need to build
their own parser. Worse, legacy systems
often have a number of languages and
a parser is needed for each. Standard
tools such as Lex and Yacc are rather a
disappointment for this purpose, as they
deal poorly with lexical hiccups and lan-
guage ambiguities.” [2].

Most of the approaches [9, 14, 10, 2] are based
on parsing techniques and thus rely on having the
right parser for the right dialect for every language
that is used within an organization.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

To circumvent this problem, we try to answer
the question “How can we build a language inde-
pendent duplication detector and what will it de-
tect?”

Structure of the Paper. In Section 2, we pro-
pose a language independent approach based on
(a) simple string matching, (b) textual reports that
synthesize the duplication information found, and
(c) scatter plot visualizations as a helpful means in
analyzing duplication.
To validate our claim of language indepen-

dence, we present in Section 3 the results we
obtained with four case studies written in four
different languages having diverse syntaxes: C,
Smalltalk, Python and Cobol. To show that our ap-
proach is able to detect significant duplication, we
present the overall percentages of duplication that
we found in the different case studies. Then, by
visually inspecting some samples of the identified
files, we exhibit anecdotal evidence of duplication
in cloned files, in files that underwent evolutionary
change, and other duplication artefacts. Finally,
in Section 7, we discuss related work and future
plans.
Note that proposals for duplication removal are

not in the scope of this paper. Remedies for the
duplication problem are not a trivial topic and de-
serve attention on their own account.

2. A Language Independent Approach
As we have stressed with the introductory

quote, language dependency is a big obstacle when
it comes to the practical applicability of duplica-
tion detection. We have thus chosen to employ a
technique that is as simple as possible and prove
that it is effective in finding duplication.
In this section, we detail the principles behind

our approach under the three aspects algorithms
used to compute the comparisons data, visualiza-
tion of the comparison data, and pattern matching
to condense the data. Figure 1 shows an overview
of the steps that take us from source code to dupli-
cation data.

2.1. Algorithmic Aspects
Clone detection is always a two-step process.

First, source code is transformed into an internal
format. Second, a more or less sophisticated com-
parison algorithm is then performed on the internal
data. In our case, the code is only slightly trans-
formed using string manipulation operations. To
compare the transformed lines, we use basic string
matching.

Source Code Transformation

Two decisions must be made: the nature of the
transformation and the size of the source code
fragment that will be the entity of the incidental
comparison. We choose one line of source code
as code fragment entity on which we base our al-
gorithm. The choice is on the one hand motivated
by the consideration that the important copy and
paste performed by programmers include one or
more lines, and on the other hand that prepocess-
ing can be kept simple (see [9] for an approach
that uses multiple lines as fragment size). To stay
language independent, we refrain from code trans-
formation to more abstract formats like AST’s [2]
which have to employ parsing, or parameterized
strings [1] which need at least a lexer. The trans-
formation we apply to a code fragment is minimal
and stays in the realm of string manipulation: We
remove comments and all white space until we get
a condensed form of the line.1 As an example, the
C line

if(code & pcObjType) /* print type */

is condensed to

if(code&pcObjType)

As a consequence, the code reader which does
the transformation is adapted to any new language
in a few minutes.
The transformation reduces the entire file to an

ordered collection of effective lines (see Figure 1)
that will be compared against itself and line col-
lections from other files.

1The UNIX diff utility uses the same condensation tech-
nique upon request.

Effective FileEntire File

Comparison of File A with itself
A Match between code from file A (1-8)

and code from file A (9-16)
[Pattern: |-||-|||]

[Pattern: |-||-|||].

VisualizationReports

Comparison Matrix

Transformation Comparison

Figure 1. Overview of the approach.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

Comparison Algorithm

Since we do not know what to look for, we cannot
apply grep-like pattern matching algorithm but
have to compare every entity (transformed source
line) with every other entity. The comparison of
two entities is done by string matching. The re-
sult is a boolean true for an exact match and a
false otherwise. This value is stored in a matrix
(see Figure 1), taking the coordinates that the two
compared entities have in their respective ordered
collections as the matrix coordinates for the com-
parison result. Note that after the the comparison
process, the matrix only contains matches of indi-
vidual lines and not yet of whole sequences. They
will have to be extracted from the matrix in a sep-
arate pass (see section 2.3).

Optimization. The search space spanned by an in-
put of lines is quite uncomfortable (). We
thus reduce it by preprocessing the transformed
lines a second time: the lines are hashed into
buckets. The string matching is then applied on
all possible pairs of one hash bucket. Equal lines
have the same hash value and are thus thrown into
the same hash bucket, so no false negatives occur.
This procedure cuts the processing time by the fac-
tor (the same optimization is used in [2]).

2.2. Visualization
The matrix created by the comparison can be

visualized using scatter-plots [6], which were first
used by geneticists looking for similar strings of
DNA. Such “dot drawings” (see Figure 2) allow
immediate recognition of typical situations.
Some interesting configurations formed by the

dots in the matrices are the following [6]:

a) diagonals of dots indicate copied sequences
of source code (see Figure 2 a)). Later in
the paper, Figure 5 shows some instances of
copied sequences in a Cobol system.

b) sequences that have holes in them indicate
that a portion of a copied sequence has been
changed (see Figure 2 b)).

c) broken sequences with lower parts shifted in-
dicate that a new portion of code has been in-
serted (see Figure 2 c), above the main diag-
onal), or removed, respectively (Figure 2 c),
below the main diagonal). Figure 7 on page 8
will be showing an example of how evolu-
tionary change shows up in real code.

d) rectangular configurations indicate periodic
occurrences of the same code (see Figure 2

a b c d a b c di if ge h f ge h

a) Diagonals

a b c d f ge h x y z e f gdcba

c) Broken Diagonals

a b c d a b x di if ge y ze hh

b) Diagonals with holes

a b c d h i cc lf ge b k bj cb

d) Rectangles

Figure 2. Different Configurations of
Dots.

d)). An example is the break; at the end of
the individual cases in a C/C++ switch sta-
tement or recurring preprocessor commands.

Note that due to the line-based comparison, re-
peated matches of either structural code elements
that occur alone on one line (e.g. the break;) or
minimal “idioms” (e.g. the frequent C-line int i;)
spread spurious dots all over the matrix. To get rid
of this noise rather than duplication, we have two
possibilities: (a) Remove such lines up front by
running a filter over the input before the compar-
ison process. (b) Use a pattern matcher to sweep
over the matrix and remove single dots. We do
both.

2.3. PatternMatching to ExtractCopiedSe-
quences

The algorithm as stated above does not catch
duplicated code that was changed inside one line
of code. In a sequence of copied code that is
compared with the original sequence, a changed
line shows up as a hole in the diagonal match pat-
tern (see Figure 2 b)). To cope for this weakness
when extracting whole copied sequences, a pattern
matcher is run over the matrix which captures di-
agonal lines and allows holes up to a certain size
in the middle of the line.
The sequence extraction is run automatically

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

and produces textual reports containing the de-
tailed locations of the duplication.

2.4. Textual Reports
The report extract shown below presents

matched sequences that were found in two com-
parisons. First, the participants of the compari-
son are identified. Then, a summary of all the se-
quences found is presented. Finally, all matched
sequences are listed in detail. In the Pattern-
string of a match, a vertical bar stands for two
lines that matched, and a horizontal bar marks two
lines that did not match. A dot in the pattern string
represents a source line that contained comments
or white space and was removed from the input
before the comparison. Such lines are not taken
into account during the pattern matching and are
printed so that reported source line numbers corre-
spond to the length of the pattern.
Comparison of
˜/gcc/gcc-2.8.1/cp/pt.c
with itself

Sequence length: 13 Number of Sequences: 1

A Match between code from file ’pt.c’
(from line 2603 to line 2615)
[Pattern: ||-||-||-||||]
and code from file ’pt.c’
(from line 68 to line 80)
[Pattern: ||-||-||-||||].
(Stretch = 13 , RelevantLines = 10)

Comparison of
˜/gcc/gcc-2.8.1/config/i386/i386.c
with
˜/gcc/gcc-2.8.1/config/h8300/h8300.c

Sequence length: 17 Number of Sequences: 1

A Match between code from file ’i386.c’
(from line 3060 to line 3092)
[Pattern: |-..|-..|-..|-..|-..|-..|-..|-..|]
and code from file ’h8300.c’
(from line 1071 to line 1087)
[Pattern: |-|-|-|-|-|-|-|-|].
(Stretch = 17 , RelevantLines = 9)

Reports are important since they provide the ex-
act location of the duplicated code. This informa-
tion is handy for the maintainer that has to work
with the code. Reports are also the basis for com-
puting more abstract numbers like duplication per-
centages (see Section 4).

2.5. Visualization vs. Automated Detection
The advantage of the visualization over the au-

tomated pattern matching is twofold: First, im-
ages of duplication can be striking and allow to

grasp situations immediately. A prime example is
the image of the code evolution in Figure 7. Sec-
ond, visualization allows an exploratory approach
to the investigation of the duplication situation in
a system. Exploratory in the sense that unknown
configurations attract the eye of the user and lead
to unexpected findings, whereas pattern matching
only catches preprogrammed, known configura-
tions.

Tool Support. We have implemented the pre-
sented approach in a tool called DUPLOC,2 run-
ning under VISUALWORKS 2.5. DUPLOC offers a
click-able matrix display which allows the user to
look at the source code that produced the match.
DUPLOC includes an information mural algorithm
that enables the tool to present a matrix of 100’000
lines per side in its entirety on a 600x800 screen.

3. Selecting the Case Studies
The goal of our case studies is to stress the lan-

guage independent aspects and to prove the poten-
tial of our approach. In order to choose the case
studies we took four criteria into account: first the
implementation language, second the potential of
duplication, third the size of the system and fourth
the possibility of reproduction of the experiment
by other researchers.

Implementation Languages. We selected lan-
guages that have clearly different syntaxes: C,
Smalltalk, Python and Cobol. Smalltalk is well-
known to have a simple and uniform, keyword-
based syntax. The syntax of Python is based on in-
dentation which replaces block delimiters. In the
overly verbose Cobol syntax, line numbers exist
and identifiers that are attached at the end of each
line. It is obvious that writing a parser for these
diverse languages would be a entire new endeavor
in each case [15].

Potential Duplication. We used case studies from
different sources to maximize the potential range
of the duplication. We took (a) two industrial case
studies for which it was known that they contained
a lot of duplication, (b) one case study where the
duplication of code was suspected to be low, and
(c) a small application from the public domain for
which we had no knowledge about the duplication
situation.

Size. The scalability of our approach has to be
considered under two aspects: First, does it scale

2DUPLOC is available under a GNU license at
http://www.iam.unibe.ch/ rieger/duploc/.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

given the size of the source code? Second, does
it scale given the amount of duplication that is
found? To prove that our approach is scalable un-
der the first aspect, we took the full GNU gcc
source code whose size is 13Mb. That our ap-
proach also scales regarding the second aspect
was proved when one of the industrial applications
happened to contain an enormous amount of dupli-
cation.

Reproducibility of the Experiment. We chose
one well-known and freely available case study:
the Free Software Foundation C compiler gcc 3 to
make our experiments reproducible by others.
The Case Study Material The chosen case stud-
ies are: the implementation files of the GNU gcc
source (written in C), a web-based message board
(Python), parts of a payroll application (Cobol)
and a database server (Smalltalk). The statistics of
the case studies are given in the table below. Note
that in the database server case one file contained
one class.

Case Language Size # Files LOC
gcc C 13.4 Mb 221 460000
Database Server Smalltalk 7.1 Mb 593 245000
Payroll Cobol 3 Mb 13 40000
Message Board Python 265 K 36 6500

Initial Set-Up. We have performed the case stud-
ies according to this procedure: (1)We took source
code about which we did not know anything. (2)
Since the code was written in a number of dif-
ferent languages, we had to adapt our tool to the
language at hand so it could normalize the lines
(white space and comment removal). (3) We ran
the tool off-line to produce the reports. (4) We
extracted overall duplication percentages from the
reports and analyzed them (see section 4). (5) We
browsed the visual representations of the matrices
to evaluate our findings (see section 5).

4. Code Duplication Overview
In this section, we will present the overall per-

centages of duplication which we extracted from
the reports produced by our tool (see section 2.4).
We take these numbers to be nothing more than
very general indicators of duplication occurring in
a system. We will not go into a more detailed anal-
ysis of the reports, since our aim in this section is
only to prove that our approach detects a signifi-
cant amount of duplication.

Constraining the Results. The results we present
here have been obtained with the following con-
straints: First, to remove accidental duplication of

3ftp://prepr.ai.mit.edu/pub/gnu/

small fragments, we limited the detection to se-
quences of lines having 10 or more lines. Sec-
ond, to avoid missing duplicated sequences with
changed parts, we allowed holes in the copied se-
quences up to 20%4 of the total length of the se-
quence. Third, since reengineers are looking for
the duplication of functional code elements, we
chose to present the percentage of duplication in
terms of effective lines of code. This means that
we computed the percentage over the set of lines
from which comments and white space have been
removed (see section 2.1). This way we minimize
the impact of comments in the percentage compu-
tation. As a consequence, a file can be integrally
copied into a second, but if this second file con-
tains a lot of comments the percentage will not re-
flect this situation.

4.1. Overview of the Duplication

Having a global percentage of duplication per
application is the first indication of the state of an
application.

Average Percentage of Duplication. The follow-
ing table presents the average percentage of dupli-
cation per file. We also include the percentage in
terms of entire code (i.e. files including comments)
so that readers can have their own ideas about the
relevance of the duplication detection. The third
line shows the number of files that effectively con-
tain duplicated code under the constraints we fixed
(see above).
Note that inferior percentages for the entire

code is normal because comments and white space
can make up for a lot of lines.

Average percentage of duplication found per file
Case gcc Datab. S. Payroll Mess. B.
effective LOC 8.7% 36.4% 59.3% 29.4%
entire LOC 5.9% 23.3% 25.4% 17.4%
of files 143 464 13 24
with duplication
Total # of Files 170 593 13 36

The quite high average percentage found for the
two industrial case studies (Cobol payroll system
and Smalltalk database server) is not totally sur-
prising considering fact that these were given to
us because it was suspected that they contained
a lot of duplication. Nevertheless we were as-
tounded by their overall duplication ratio. The web
message board system shows some duplication el-
ements that are result from evolutionary clones,
since the system was given to us as a snapshot in

4These thresholds come from our experiences with the case
studies.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

the middle of an extension, thus containing old as
well as new code side by side. The gcc source
code has the lowest ratio. This is not surprising
because gcc is known to be software of a good
quality.
Now we refine our analysis by looking at the

duplication percentage per file. We present the
payroll system and gcc because they cover the ex-
tremes in the range of our case studies. Note that
the tables in Figures 3 and 4 only display the files
containing the effective duplication.

Percentage per File: the Payroll Case. For the
payroll system, the overview (Figure 3) immedi-
ately identifies three main groups according to the
degree of duplication: (a) few duplication (around
5% in file F), (2) some duplication (from 25% to
50% in files A, B, D, E and J) and (3) mostly du-
plicated (up to 70% in files C, G, H, I, K, L and
M).

Figure 3. Duplication Percentage per
Files in the payroll case study.

Percentage per File: the gcc Case. Even if the
average percentage showed that gcc has the low-
est percentage of duplication, looking at the per-
centage per file (Figure 4) gives another view. We
see that two files have more than 60% of duplica-
tion, that 6 files have more than 50% of duplication
and that a number of files have more than 20% of
duplication.
The data from the reports that the analysis of

this section was made with also serves the soft-
ware maintainer in the process of eliminating du-
plication. What we want to do in the next section
is to look at line-based comparison data from the
angle of its representation in scatter-plots.

Figure 4. Duplication Percentage per
Files in the gcc case study.

5. Visually Analyzing the Duplication

In this section, we want to give credibility to
our claim, from section 2.2, that visualizations of
duplication help the maintainer. First the graphi-
cal visualizations of the duplication gives a quick
idea in terms of the frequencies and the size of
the duplicated elements. Second, they support un-
derstanding of the nature of the duplication, e.g.
if the file has been cloned or if one big chunk or
multiple small chunks have been copied. The im-
ages presented in this section contain all the found
matches, i.e. we did not remove spurious dots from
the plots to “clean” them.
Besides the copy of small code fragments oc-

curring inside a same file or between different files,
we present clones of entire files and evolutionary
changes that we found in the case studies..

Cloned Files

By cloned files we designate files that have a very
high duplication ratio between each other. Both,
in the payroll case as well as in the database server
case, we found distinctive files that were almost
identical copies of each other. In Figure 5 we see
that file K is mostly a copy of file I and we see
where the few changes have been applied.
In Figure 6 we see five classes that are identical

copies (except class E which exhibits some minor
changes). The spurious dots and rectangular pat-
terns found in the plots act as a kind of visual fin-
gerprint, which would help to find the members of
this “club” in a larger matrix even if they were not
clustered together like in Figure 6.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

File K

File I

Figure 5. Comparison of the two
Cobol files I and K from Figure 3.

Evolutionary Change

Knowing that the message board code contained
old and new versions, we can observe how code
evolution appears in scatter-plots (the following
explanations refer to the right rectangle in Fig-
ure 7). Most of the changes that were applied to
the code consisted in adding lines. This shows up
as broken diagonals that are progressively shifted
to the right. In the middle of the diagram, how-
ever, we see a down-shift of the diagonal, telling
us that a chunk of code has been removed. Since
one matrix coordinate corresponds to one source
line, we are able to estimate the size of the changed
code chunks easily, which facilitates understand-
ing further. Note that the same information could
be obtained using the diff tool, but it is only via
the image that the user understands the changes
quickly.
Note that Seesoft [3] that interactively displays

line oriented statistics like the age of the line and
its programmer is a better suited tool for this kind
of analysis.

Additional Comments About the Visualization

The plain line-based comparison produces some-
times highly redundant comparison matrices like
the one in Figure 8. The fact that we have horizon-
tal as well as vertical repetitions of the diagonal
sequences is due to the fact that the programmer
copied the same sequence in both files multiple
times (up to 16 times in the example). To be useful

Class A Class B Class C Class D Class E

Class A

Class B

Class C

Class D

Class E

Figure 6. Five sibling classes in
the database server application
(Smalltalk). The five rectangles con-
taining the main diagonal represent
the comparisons of each class with
itself.

to the maintainer, the visual redundancy could be
removed from the picture. This is left to be done
in future work.
We conclude that visualization emphasizes du-

plication situations, sometimes to the point of
shouting at the maintainer that the code should
be fixed. Moreover, visualization helps to under-
stand where and how code has changed between
versions.

6. Technical Remarks
We add some technical remarks about the tool

we implemented.

Scalability. The scalability issue is a crucial ques-
tion when striving for applicability in the indus-
trial context where system sizes of hundreds of
KLOCs are normal. The table below summarizes
some performance statistics gathered during our
case studies. We have run the tool on a single
G3 MacIntosh with 230Mhz and 100Mb RAM. It
checked for all matching code sequences which
where longer than 10 matching lines (including
holes). Note that the task of computing the com-
parisons of a set of files can be easily parallelized.
In the table below, he row entitled parallel tasks
reports how many parallel runs we used to com-
pute the data for this case study. The row enti-
tled comparisons reports the number of file-to-file

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

Version
Old

Old Version New Version

Figure 7. Comparisons of two ver-
sions of a Python-file. In the left
square the old file is compared to it-
self, in the right rectangle, the old file
is compared to the new.

comparisons that contained one or more matches
of the required length.
The long running time for the database server

case is due to the high number of files and the ex-
ceptionally high number of duplication detected in
the system.

Performance Statistics
Case gcc Database S. Payroll Message B.
of files 221 593 13 36
LOC 460000 245000 40000 6500
parallel tasks 1 2 1 1
running time 6h30m 5h/7h 8m 1m
comparisons 1670 22939 51 50

We experienced that the performance of the cur-
rent implementation tool is sufficient for systems
sizes below 1MLOC. We think that in a mainte-
nance project, duplication data is something that
does not change frequently and can be computed
once over night and then be interpreted afterwards
Should performance turn out to be a critical fac-
tor, a re-implementation of the tool in C++ would
certainly amend the problem.

7. Related Work
The analysis of code to identify copy and paste

and plagiarism [5, 4, 11, 7] is broad. Various tech-
niques are used: structural comparison using pat-
tern matching [14], metrics [13, 10] or statistical
analysis of the code, code fingerprints [12, 8, 9].
[5, 4] detect student plagiarism using statistical

comparisons of style characteristics such as the use
of operators, use of special symbols, frequency of
occurrences of references to variables or the order
in which procedures are called. [7] uses the static
execution tree (the call graph) of a program to de-
termine a fingerprint of the program.
In [14], a regular language is proposed to iden-

tify programming patterns. Cloning can be de-

Figure 8. Extract of a compari-
son between two different files from
the database server (Smalltalk). It
presents rich but confusing patterns
of duplication.

tected if we assume that if two code fragments can
be generated by the same patterns then they could
be clones.
Johnson[8] uses a specific heuristic, using con-

straints for the number of characters as well as the
number of lines, to gather a number of lines a snip
of source code on which he applies the fingerprint
algorithm. Sif [12] that is also based on the same
idea. However no graphical support is provided
and the reports only present an overall similarity
percentage between two files.
[10] evaluates the use of five data and control

flow related metrics for identifying similar code
fragments. The metrics are used as signatures for
a code fragment. The technique supports change
in the copied code. However it is not language in-
dependent because it is based on Abstract Syntax
Tree Annotation.
The visual display used in DUPLOC is not new,

DOTPLOT [6] uses the same principle. DOTPLOT
has been used to compare source code, but also
filenames in a file system and literary and techni-

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

cal texts. However it does not support source code
browsing and the report facilities.
DUP [1] is a program that detects parameter-

ized matches and generates reports on the found
matches. This work is however mostly focused
on the algorithmic aspects of detecting parameter-
ized duplication and not on the application of the
technique in an actual software maintenance and
reengineering context. In particular code brows-
ing is not supported.
The tool of [2] transforms source code into ab-

stract syntax trees and detects clones and near miss
clones among trees. It reports similar code se-
quences and proposes unifying macros to replace
the found clones. Their approach requires, how-
ever, a full-fledged parser.

8. Conclusion and Future Work
In this paper, we presented a language indepen-

dent approach for detecting duplicated code. The
approach is based on (1) simple line-based string
matching, (2) visual presentation of the duplicated
code and (3) detailed textual reports from which
overview data can be synthesized.
We presented results from a number of case

studies and we showed that we can easily iden-
tify (1) duplicated code between several files, (2)
within the same file, (3) cloned files and (4) evo-
lution files. We claim that the data that was gen-
erated is useful information for practical software
maintenance and reengineering tasks.
Moreover, the results we found were in certain

instances beyond our expectations. We are refer-
ring in particular to the two industrial case studies.
The provider of the source code suspected code
duplication in the system, but we foundmuchmore
than expected. The high amount of duplication, es-
pecially in the database server case study, suggests
that the simple algorithm does not miss too much
of the duplication that is actually going on in the
system. Evaluating the impact of a parameterized
match is however one of our future goals.

Future Plans. We plan to (a) Experiment with dif-
ferent algorithms for fuzzy matching, (b) Evalu-
ate the impact of a parameterized comparison al-
gorithm on this approach. We want to qualify
how much of duplication we are missing and com-
pare the preprocessing time, space tradeoff and
languages independent lose between the two ap-
proaches. (c) Evaluate the gain in time that Sif
[12] as a first filter of similar files can provide. (d)
Develop a methodology for finding essential du-
plicated code in a system. This includes especially

the fine tuning of the report facility. We will work
in close contact with industrial software maintain-
ers. (e) Investigate if textual comparison is a useful
approach for exploring the structure of data other
than source code, like for example program exe-
cution traces, where it could be interesting to find
recurring patterns of execution sequences.

8.1. Acknowledgments

This work has been funded by the Swiss Gov-
ernment under Project no. NFS-2000-46947.96
and BBW-96.0015 as well as by the European
Union under the ESPRIT program Project no.
21975. We want to thank Kurt Verschaeve and
Bart Wydaeghe from the SSEL of Vrije Univer-
siteit Brussels for fruitful discussions.

References
[1] B. S. Baker. A Program for Identifying Duplicated

Code. Computing Science and Statistics, 24:49–
57, 1992.

[2] I. Baxter, A. Yahin, L. Moura, M. S. Anna, and
L. Bier. Clone Detection Using Abstract Syntax
Trees. In Proceedings of ICSM. IEEE, 1998.

[3] S. G. Eick, J. L. Steffen, and E. E. S. Jr. SeeSoft—
A Tool for Visualizing Line Oriented Software
Statistics. IEEE Transactions on Software Engi-
neering, 18(11):957–968, Nov. 1992.

[4] S. Grier. A tool that detects plagiarism in pascal
programs. SIGSCE Bulletin, 13(1), 1981.

[5] M. Halstead. Elements of Software Science. Else-
vier North-Holland, 1977.

[6] J. Helfman. Dotplot Patterns: A Literal Look at
Pattern Languages. TAPOS, 2(1):31 – 41, 1995.

[7] H. Jankowitz. Detecting plagiarism in student
pascal programs. Computer Journal, 1(31):1–8,
1988.

[8] J. H. Johnson. Identifying Redundancy in Source
Code using Fingerprints. In Proceedings of CAS-
CON 93, pages 171–183, 1993.

[9] J. H. Johnson. Substring Matching for Clone De-
tection and Change Tracking. In Proceedings of
the International Conference on Software Main-
tence (ICSM), pages 120–126, 1994.

[10] K. Kontogiannis. Evaluation Experiments on the
Detection of Programming Patterns Using Soft-
ware Metrics. In I. Baxter, A. Quilici, and C. Ver-
hoef, editors, Proceedings Fourth Working Con-
ference on Reverse Engineering, pages 44 – 54.
IEEE Computer Society, 1997.

[11] N. Madhavji. Compare: A collusion detector
for pascal. Techniques et Sciences Informatiques,
4(6):489–498, nov 1985.

[12] U. Manber. Finding similar files in a large file
system. In Proc. 1994 Winter Usenix Technical
Conference, pages 1–10, 1994.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

[13] J. Mayrand, C. Leblanc, and E. Merlo. Experi-
ment on the automatic detection of function clones
in a software system using metrics. In Interna-
tional Conference on Software System Using Met-
rics, pages 244–253, 1996.

[14] S. Paul and A. Prakash. A framework for source
code search using program patterns. IEEE Trans-
actions on Software Engineering, 20(6):463–475,
jun 1994.

[15] H. Reubenstein, R. Piazza, and S. Roberts. Sepa-
rating Parsing and Analysis in Reverse Engineer-
ing Tools. In First Working Conference on Re-
verse Engineering, pages 117–125, 1993.

[16] I. Sommerville. Software Engineering. Addison-
Wesley, fifth edition, 1996.

Authorized licensed use limited to: York University. Downloaded on March 03,2010 at 12:35:12 EST from IEEE Xplore. Restrictions apply.

