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Abstract

Buffer overflows are the most common source of security
vulnerabilities in C programs. This class of vulnerability,
which is found in both legacy and modern software, costs
the software industry hundreds of millions of dollars per
year.

The most common type of buffer overflow is the run-
time stack overflow. It is common because programmers
often use stack allocated arrays. This enables the attacker
to change a program’s control flow by writing beyond the
boundary of an array onto a return address on the run-time
stack. If the arrays are repositioned to the heap at compile
time, none of these attacks succeed. Furthermore, reposi-
tioning buffers to the heap should perturb the heap memory
enough to prevent many heap overflows as well.

We have created a tool called Gemini that repositions
stack allocated arrays at compile time using TXL. The
transformation preserves the semantics of the program with
a small performance penalty. This paper discusses the
semantics-preserving transformation of stack allocated ar-
rays to heap allocated “pointers to arrays”. A program that
is amenable to a buffer overflow attack and several Linux
programs are used as examples to demonstrate the effec-
tiveness and overhead of our technique.

1. Introduction

C is a widely used programming language for critical
software (e.g., operating systems and system software).
Most of the software that is bundled with Linux and Sun So-
laris are written in C. Furthermore, the most popular servers
on the Internet for e-mail, the World Wide Web, and the Do-
main Name System are implemented in C [3, 19, 23].

C programmers often use arrays to store data gathered
from external input. Stack allocated arrays are automatic
variables, hence they are allocated and de-allocated during

run-time without programmer intervention. This is conve-
nient since the input is often used immediately [9]. Despite
their convenience, stack allocated arrays are vulnerable to
buffer overflow attacks. Fortunately, allocating all arrays to
the heap can mitigate such attacks.

Stack buffer overflows are the most common form of se-
curity vulnerability found in C programs [20]. This vulner-
ability alone costs industry hundreds of millions of dollars
per year [1]. For example, bind, the software responsible for
95% of the Domain Name System, was discovered to con-
tain a buffer overflow as recently as November, 2002 [3, 2].
After discovery of a vulnerability in infrastructure-critical
software, many man hours of software analysis, reinstalla-
tion, and testing are required to fix it.

Moving stack allocated arrays to the heap accomplishes
two things. First, it disrupts the attack vectors of known
stack buffer overflow exploits and all future stack buffer
overflow exploits. Second, it can disturb the heap mem-
ory enough to eliminate known heap buffer overflow attack
vectors also. Moving a stack allocated array to the heap
does not fix the bug that causes the buffer overflow, it only
prevents the overflow from providing the attacker with el-
evated privileges, such as a command shell. This leads to
fewer vulnerabilities in the long run since it is very difficult,
and in many cases impossible, for an attacker to leverage a
heap buffer overflow [20].

In C, a heap allocated buffer is actually a pointer to
contiguous memory. Pointers are not automatic variables,
hence they require explicit memory management by the pro-
grammer. The added complication of explicit memory man-
agement often leads to bugs such as uninitialized pointers
and memory leaks.

Memory management can be automated by a program
that transforms arrays into “pointers to arrays”. Such a pro-
gram should preserve the semantics of the original program
so that the transformation is transparent. In C, this is a prob-
lem since arrays and pointers are not equivalent types.

Preserving the semantics of the program after the trans-
formation allows code to be developed using conventional
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programming practices (i.e., allocating certain buffers on
the stack). Furthermore, maintenance and debugging need
not be hampered by the prolific use of pointers. Rather,
the code is automatically transformed to use heap allocated
“pointers to arrays” immediately prior to compilation.

We have created a tool called Gemini that uses TXL
rules to transform stack allocated arrays into heap allocated
“pointers to arrays” automatically [11]. This transformation
preserves the semantics of the original program, allowing it
to be inserted into the end of the development process trans-
parently and with a small amount of run-time overhead.

The remainder of this paper is structured as follows: Sec-
tion 2 outlines related research, Section 3 discusses the dif-
ferences between arrays and pointers in C, Section 4 out-
lines the transformation process, Section 5 presents an ex-
ample that demonstrates the effectiveness and overhead of
our technique, Section 6 describes the limitations of this
work and our future plans to overcome them, and Section 7
outlines the conclusions of this work.

2. Related Research

This work is related to two major areas of research. The
first is software security, specifically as it applies to buffer
overflow vulnerabilities in code. The second is the use of
source code transformation for code re-engineering.

2.1 Buffer Overflows
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Figure 1. A stack buffer overflow

Buffer overflows may occur when a fixed size memory
allocation is used to store a variable-size data entry. There
are conflicts when the variable-size data entry overruns the
bounds of the fixed-size memory. In Figure 1, ‘+++++’ rep-
resents valid data in the buffer and ‘/////’ represents the at-
tacker’s data. These overflows are typically exploited by
entering a string that is larger than the buffer assigned to
hold it. If the return address (RA) is part of the overwrit-
ten run-time stack, an attacker may execute arbitrary code,

such as spawning a remote terminal session [16, 20]. This
is discussed in more detail in Section 5.1.
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Figure 2. A heap buffer overflow

In Figure 2, the same buffer overflow is executed against
a heap allocated buffer. Unlike the stack, the heap does
not contain return addresses, making it harder to change
the program’s control flow [20]. This particular overflow
will overwrite the data in the second buffer, which may lead
to erroneous behavior during program execution. However,
such behavior is unlikely to be a security vulnerability [20].

2.1.1 Technologies to Detect & Prevent Buffer Over-
flows

Some security tools, such as Splint [14], perform static anal-
ysis to find code that is likely to be vulnerable. Unlike our
technique, however, they require programmers to annotate
their source code with constraints. Not all of the existing
source code analysis tools require code annotations, how-
ever. Flawfinder [24], RATS [17], and ITS4 [5] are all tools
that examine source code and report possible weaknesses.

An overview of these tools, along with a comparison
of their capabilities, can be found in a Linux Journal arti-
cle [15]. In general, these tools direct the attention of code
auditors to C/C++ functions that are known to be associ-
ated with security problems, such as buffer overflows, and
produce a list of vulnerable code statements.

StackGuard [8] has been reasonably successful at report-
ing buffer overflows immediately after they happen at run-
time. Specifically, StackGuard inserts code into the appli-
cation at compile time and a ‘canary’ value just before the
return addresses on the run-time stack. When the function
returns, the added code checks if this canary value is still
in place. If the canary value is no longer present, a buffer
overflow must have occurred. When this happens, the ap-
plication terminates with a notification.

A similar solution to StackGuard is StackGhost [10].
StackGhost is a modification to the OpenBSD 2.8 kernel on
the Sun Sparc architecture. This modification assigns the
return address of all processes in a way that exposes mod-
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ified return addresses. One way this is accomplished is by
encrypting the return address.

Richard Jones and Paul Kelly patched the GNU C Com-
piler (GCC) to perform bounds checking at run-time [12].
This approach protects static, stack and heap allocated
buffers. Every buffer has extra information stored in a ta-
ble, such as its bounds. This table is then referenced to de-
termine if buffer accesses are legal. However, the overhead
generated by these references can increase the run-time of
the application by several orders of magnitude [12].

A way to avoid the side effects of an exploited vulnera-
bility is to disallow the execution of the run-time stack. This
prevents executable code, such as shell instructions that may
have been placed on the stack during a buffer overflow, from
being executed.

One way to get around a non-executable run-time stack
is to perform a heap overflow, followed by a stack overflow.
The heap overflow is used to insert the binary instructions
for a command shell into the program’s executable memory
space. A stack overflow is then used to modify the return
address of the current stack frame to point to the executable
shell instructions in the heap.

Some work has been done to define a framework for
discovering and patching vulnerabilities at run-time in re-
sponse to a network worm [18]. A worm is a program that
propagates itself by discovering hosts on a network that are
vulnerable to an attack, such as a buffer overflow, and then
leveraging that attack to take over the computer. Once the
new computer is compromised, the worm uses it to continue
searching for another vulnerable host. The work describes
the components necessary to detect an attack, and then find
and correct the vulnerable source code automatically. The
framework defines a program to discover when a service
offered on a host is vulnerable to a network worm. The
vulnerable service is placed in a sand-boxed environment to
discover the specific attack the worm is using. The frame-
work then uses a program to re-engineer the source code of
the service so that it is no longer vulnerable to the worm.
The patched source code is automatically tested for proper
inoculation to the worm, recompiled and reinstalled. Our
work can be used by the framework to re-engineer software
so that it is no longer vulnerable to buffer overflow attacks.

Dynamic binary translation is a technique that modifies
the binary code of a program at run-time. It can be used
to patch software without recompilation. These techniques
are platform dependent and often require special run-time
libraries in order to function correctly. One example of such
a system is Dyninst [4], a C++ class library for performing
run-time code patching.

2.2 Source Code Transformation

Several languages have been created to perform source
code transformation. Two such languages are TXL [6, 7]
and Stratego [22, 21].

TXL uses a grammar for the input text to be transformed
and a set of rules for performing the transformations. TXL
can be thought of as a mixture of a functional programming
language and the UNIX tools lex and yacc.

The TXL grammar files are specified in extended
Backus-Nauer form. First, TXL uses the specified gram-
mar files to produce a scanner and parser for that grammar.
Second, it generates a parse tree from the input using the
scanner and parser. Finally, it applies the transformation
rules to the tree. The scope of any rule is a subtree of the
tree, as described below. An example of a parse tree is pro-
vided in Figure 4. Elliptical nodes represent non-terminal
symbols and rectangular nodes represent terminal symbols
in the grammar.

rule remExactMatch Def [externaldefinition]
replace [repeat externaldefinition]

First [externaldefinition]
Rest [repeat externaldefinition]

where
First [= Def]

by
Rest

end rule

Figure 3. A sample TXL rule that removes all
duplicate external definitions from a C pro-
gram.

Every TXL transformation rule must have a replace di-
rective and a by directive. The replace directive specifies
the type of tree the rule will replace, and the by directive
specifies what the rule will replace a matching tree with.

A rule searches its scope and matches each subtree that is
of the type specified by the replace directive. For example,
the rule in Figure 3 only matches trees of type [repeat exter-
naldefinition]. In the TXL grammar for C, this specifies any
sequence of zero or more external definitions, such as global
declarations and function definitions. The remainder of the
replace directive specifies what the tree must be composed
of to match successfully. In this example, the [repeat exter-
naldefinition] must begin with an external definition and be
followed by a sequence of zero or more external definitions.

If a matching tree is found, First is bound to the first
element of type [externaldefinition] and Rest is bound to
the remaining elements that follow First. This rule also re-
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[repeat externaldefinition]

[program]

[translationunit]

[declaration]

[decl_specifiers] ;

[decl_specifier] [repeat decl_specifier]

[type_specifier]

char

[decl_specifier] [empty]

[simple_type_name]

[externaldefinition] [empty]

[simple_type_name]

[id]

c

[type_specifier]

Figure 4. The TXL parse tree for the file con-
taining the C declaration ‘char c;’

quires an argument whose type is specified by the variable
Def. Def is bound to the tree that is supplied as the argu-
ment.

The where directive specifies that the tree bound to
First must be equal to the tree bound to Def. Equality
is determined by the types of the trees and the values of the
trees’ terminal symbols. If the where directive succeeds,
the tree that matched the rule is replaced by the tree in the
by directive. This tree must be of the same type specified
by the replace directive.

The transformation always preserves syntax since the re-
placement tree is of the same type as the matching tree.

Stratego, which is another text transformation language,
transforms text given a set of signatures, rules and strategies
for applying those rules. The signature is similar to a gram-
mar in that it defines how to construct the first-order terms
that Stratego operates on. The rules define how signatures
are transformed by combining term re-writing strategies.

3. C Arrays and Buffers

There is a common misconception that C arrays and
pointers are equivalent. This is not true for two reasons.
First, arrays are not variables, and second, the memory lay-
out for an array is different than that of a “pointer to ar-
ray” [13].

char a[7];

a[0]a[1] a[6]

a:

char *p = (char*) malloc(7 * sizeof(char));

p:

p[0]p[1] p[6]

char matrix[2][7];

char (*matrix)[7] = (char *[7]) 
      malloc(14 * sizeof(char));

matrix:

Figure 5. Array allocation versus pointer to
array allocation

Figure 5 shows the memory allocation for an array a and
a “pointer to array” p. In the first case, the address of a is
equivalent to the address of a[0]. The type of a is “array
of 7 char”, and it is allocated 7 bytes. Thus, sizeof(a)
is 7. Furthermore, a is not a variable, and hence, not a valid
lvalue. For example, ‘a++;’ is not a valid C statement.

The address of p is not equivalent to the address of
p[0]. Rather, the memory at address p contains the ad-
dress of p[0]. Thus, sizeof(p) is 4, not 7, as is the
case with array a. The total amount of memory associated
with p is 11 bytes (i.e., 7 bytes for the array and 4 bytes for
the pointer). The compiler recognizes that this is a pointer
to an array, and de-referencesp automatically when the pro-
grammer references p[0]. The C statement ‘p++;’ is le-
gal since p is a variable, and hence, a valid lvalue.

When an array is a parameter to a function, the com-
piler automatically performs a transformation similar to our
technique. Specifically, the compiler transforms the array
declaration into a “pointer to array” declaration. Arrays
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can be degenerated into “pointers to arrays” without loss
of data, since it can automatically adjust how the memory
is accessed.

When an n-dimensional array is implicitly transformed
by the compiler, the first dimension is lost. Instead, the
compiler creates a pointer to an array, where the dimensions
of the new array are dimensions 2 through n.

For example, suppose a function declares a formal ar-
gument, ‘char matrix[2][7]’. The programmer be-
lieves this specifies an array with 2 rows and 7 columns.
However, the declaration is implicitly transformed to
‘char (*matrix)[7]’. This declares a pointer to an
array of 7 chars. matrix is now a pointer to a row
of the original array. If the programmer references ma-
trix[1][5], the compiler will dereferencematrix, add
12 (i.e., (1 × 7) + 5) to the address stored there, and load
the value at that location.

4. TXL Transformation Process

In order to perform the transformation, one simplifying
assumption is made. The C source code being transformed
must be compilable to an executable binary.

Recall that we are attempting to prevent stack allocated
buffer overflows. This is accomplished by transforming all
stack allocated arrays into heap allocated “pointers to ar-
rays”. This transformation preserves the semantics of array
access and function argument declarations.

Array declarations within functions are the only arrays
that must be transformed. Arrays that are declared outside
the scope of a function are allocated in the block storage
segment and data segment of the executable, and hence,
they are not vulnerable to stack overflows. Similarly, point-
ers to arrays and pointers to pointers, allocated with mal-
loc, are on the heap and therefore not vulnerable to stack-
based buffer overflow attacks. The following steps outline
our transformation process.

Step 1: Declaration Expansion. This step expands dec-
larations that contain a list of declarators. An example of
this transformation is shown in Figure 6. Expanding decla-
rations in this fashion simplifies the rest of the transforma-
tions.

Step 2: typedef Flattening. A typedef can either
alias a type or an array of types. Figure 7 shows the state
of the source code after flattening an array alias. Without
doing the flattening, there could be many nested typedef
aliases, making it difficult to determine the correct “pointer
to array” declaration.

Step 3: Declaration Transformation. This step trans-
forms all local array declarations to “pointer to array” dec-
larations, the results of which are shown in Figure 8. An
initialization function, shown in Figure 11, is created to per-
form all memory allocation and initialization for the pointer

Before:
1 char fun(char *data)
2 {
3 typedef char my char[5];
4 my char buf1[10], buf2 = ”test”;
5 char *i = buf1;
6 printf(
7 "I received the string: %s\n",
8 data);
9 strcpy(i, data);
10 return buf2[sizeof(buf2)-2];
11 }

After:
1 char fun(char *data)
2 {
3 typedef char my char[5];
4 my char buf1[10];
5 my char buf2 = ”test”;
6 char *i = buf1;
7 printf(
8 "I received the string: %s\n",
9 data);
10 strcpy(i, data);
11 return buf2[sizeof(buf2)-2];
12 }

Figure 6. Step 1: Declaration expansion

to array.
The memory allocation and initialization cannot be per-

formed within the body of the function due to an ambi-
guity in the C grammar concerning declarations and state-
ments. For example, parsing the declaration ‘my char
(a);’ and the statement ‘printf (a);’ can result in
the same parse tree. Therefore, if the printf statement oc-
curs immediately after the declaration of a, the C grammar
is such that the printf statement is the last declaration in
the forward declarations block. This ambiguity would be
resolved during the semantic analysis phase of compilation,
however our transformation is limited to syntax.

Due to this ambiguity, it is impossible to guarantee that
the allocation and initialization of each transformed array
will occur before any statements reference the resulting
pointer. To solve this problem, we perform all of the work
in a separate function. This function returns a pointer to the
prepared memory.

The ISO C99 specification allows the dimensions of lo-
cally defined arrays to be variable sized. After the trans-
formation, the dimensions of the resulting pointer will be
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1 char fun(char *data)
2 {
3 typedef char my char[5];
4 char buf1[10][5];
5 char buf2[5] = ”test”;
6 char *i = buf1;
7 printf(
8 "I received the string: %s\n",
9 data);
10 strcpy(i, data);
11 return buf2[sizeof(buf2)-2];
12 }

Figure 7. Step 2: typedef flattening

referenced several times during initialization. Simply copy-
ing the expression to several areas of the source code would
result in a failure to preserve the semantics of the program.
For example, if the dimension of buf1 was a call to the
random function, then a verbatim copy of the dimension
would have unpredictable results on the run-time behavior
of the application.

To solve this problem, the dimensions of the original ar-
ray are extracted and stored in a local integer variable. This
placeholder is substituted for the original expression during
allocation and initialization of the memory.

Step 4: sizeof Alias Declarations. This step inserts
a new, unique array declaration for each array declaration
that was transformed. This new declaration is the same as
the original array declaration, except that it is not initialized
with data. The results are shown in Figure 9.

The purpose of the unique declaration is to preserve the
semantics of sizeof. To be proper, the sizeof constant
should only be passed a type. However, many program-
mers will pass it a variable or an expression. If a sizeof
constant references the transformed array, it will no longer
evaluate to the same value as the original program since the
type has changed from array to pointer. In order to solve
this special case, we search through the scope of each trans-
formed array declaration and replace every reference to the
original array, within a sizeof, with the name of the new
unique declaration, as shown in Figure 10.

Step 5: Add free and Transform return and
sizeof. As shown in Figure 10, this step adds the ap-
propriate calls to free, and transforms the return and
sizeof statements. The calls to free are necessary to
preserve the behavior of the original arrays, which are auto-
matic variables. The transformation will insert the free
calls at the end of every block where the original array
would have run out of scope.

/* See Figure 11 for definition of */
/* buf1 init1 and buf2 init1 */

1 char fun(char *data)
2 {
3 typedef char my char[5];
4 int size var1 = 10;
5 int size var2 = 5;
6 char (* buf1) [size var2] =
7 buf1 init1 (size var1, size var2);
8 int size var3 = 5;
9 char (* buf2) =
10 buf2 init1 (size var3);
11 char *i = buf1;
12 printf(
13 "I received the string: %s\n",
14 data);
15 strcpy(i, data);
16 return buf2[sizeof(buf2)-2];
17 }

Figure 8. Step 3: Declaration transformations

If the return statement references one of the buffers, a
segmentation fault may occur since the return statement
will attempt to dereference an invalid pointer. Hence, the
expression that would have been returned is stored in a lo-
cal variable, and the contents of the variable are returned
instead.

Step 6: Initialization Functions. This step adds the ini-
tialization functions to the end of the source file to ensure
that any necessary header files are included above them,
such as stdlib.h. Figure 11 shows these functions. Pro-
totypes for the new functions are inserted at the top of
the source file so that the compiler can resolve the symbol
names of the functions.

5. Effectiveness and Efficiency of the Transfor-
mation

To demonstrate the effectiveness of our transformation,
we show how the transformation of source code that is
amenable to a buffer overflow prevents the exploit from oc-
curring. Several transformed Linux programs have been
tested to demonstrate the expected efficiency of the trans-
formed code, as shown in Tables 1 and 2.
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1 char fun(char *data)
2 {
3 typedef char my char[5];
4 int size var1 = 10;
5 int size var2 = 5;
6 char buf1 sizeof alias1 [size var1]
7 [size var2];
8 char (* buf1) [size var2] =
9 buf1 init1 (size var1, size var2);
10 int size var3 = 5;
11 char buf2 sizeof alias1 [size var3];
12 char (* buf2) =
13 buf2 init1 (size var3);
14 char *i = buf1;
15 printf(
16 "I received the string: %s\n",
17 data);
18 strcpy(i, data);
19 return buf2[sizeof(buf2)-2];
20 }

Figure 9. Step 4: sizeof alias declarations

5.1 Example of a Buffer Overflow

The code for both the vulnerable program and the exploit
program were adapted from source code originally written
by John Viega and Gary McGraw [20]. Both programs are
available from the project web site [11].

Figure 6 shows part of the source code of breakme.c,
a C program that contains a buffer overflow vulnerability.
The vulnerability lies in the call to the strcpy function on
line 9 without verifying that array buf1 is large enough to
hold the contents of data. The strcpy function is the
cause of many buffer overflows.

The attacker is usually interested in exploiting a program
that is running as the root user. The string that overflows
the buffer generally contains binary instructions to execute
a shell. If the vulnerable program is running as root, the
resulting shell will too.

The source code indicates that buf1 is allocated 50
bytes. Assuming buf1 is the first variable allocated on the
stack (i.e., located highest in memory), the return address
must be located at least 50 bytes above the start of buf1.

The precise location of the return address can be found
easily via stack inspection at runtime [20], or in a debug-
ger. Once the exact offset is found for the return address,
the attacker can write a program that performs the buffer
overflow.

Figure 12 shows the C program that exploits the buffer

1 char fun(char *data)
2 {
3 typedef char my char[5];
4 int size var1 = 10;
5 int size var2 = 5;
6 char buf1 sizeof alias1 [size var1]
7 [size var2];
8 char (* buf1) [size var2] =
9 buf1 init1 (size var1, size var2);
10 int size var3 = 5;
11 char buf2 sizeof alias1 [size var3];
12 char (* buf2) =
13 buf2 init1 (size var3);
14 char *i = buf1;
15 printf(
16 "I received the string: %s\n",
17 data);
18 strcpy(i, data);
19 {
20 int txl return temp1;
21 txl return temp1 =
22 buf2[sizeof(buf2 sizeof alias1)-2];
23 free (buf1);
24 free (buf2);
25 return txl return temp1;
26 }
27 }

Figure 10. Step 5: Adding free, and trans-
forming return and sizeof

overflow in breakme.c. To exploit the buffer overflow, an
attacker must send 81 bytes to breakme. The first 53 of the
bytes is the executable binary code to spawn a root shell,
the next 23 bytes are non-null filler characters to pad the
array until the return address can be overwritten at position
77, the next 4 bytes are the new return address, and the final
byte is a terminating null.

This will result in the function jumping down to the at-
tacker’s code on the stack instead of back to the calling
function on return. If everything is laid out in memory cor-
rectly, the attacker will receive a root owned command
prompt on the screen.

Figure 13 shows the vulnerable program, breakme, be-
ing executed normally by the attacker, and execution of the
exploit program resulting in a root owned shell. Fig-
ure 14 shows the exploit program failing to gain a root
shell on the transformed version of breakme. Instead, the
buffer overflow results in a segmentation fault and subse-
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1 char * buf2 init1 (int size var3)
2 {
3 char (* buf2);
4 char buf2 alias1 [5] = "test";
5 buf2 = (char (*))
6 calloc (size var3,
7 sizeof (char));
8 memcpy (buf2, buf2 alias1,
9 sizeof(buf2 alias1));
10 return buf2;
11 }

1 char * buf1 init1 (int size var1,
2 int size var2)
3 {
4 char (* buf1) [size var2];
5 buf1 = (char (*) [size var2])
6 calloc (size var1,
7 sizeof(char) * size var2);
8 return buf1;
9 }

Figure 11. Step 6: Memory allocation and ini-
tialization functions

quent termination of breakme. The transformed version
of breakme.c is shown in Figures 10 and 11.

5.2 Efficiency of Transformed Linux Programs

To show the amount of overhead that can be expected
from using heap allocated buffers in place of stack allo-
cated arrays, we transformed several Linux programs, each
with varying degrees of size and complexity, as shown in
Table 1. If a program came with a regression test suite,
these tests were performed on both the original code and
the transformed code, the results of which are shown in Ta-
ble 2.

Table 1 shows the number of arrays that were trans-
formed into “pointers to arrays” and the average run-time
increase of the resulting binary. The binaries were com-
piled without optimizations in each case. The time increase
was calculated in one of two ways. If the program did not
include a suite of regression tests, it was executed fifty times
with standard options. The result of this was compared to
the same tests being executed on the non-transformed bi-
nary. If the program did include a suite of regression tests,
the time increase was calculated by taking the difference
in fifty runs of the test suite of the transformed and non-

1 int main(int argc, char** argv)
2 {
3 char *shellcode =
4 "\x31\xdb\x89\xd8\xb0\x17\xcd\x80"
5 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0"
6 "\x88\x46\x07\x89\x46\x0c\xb0\x0b"
7 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
8 "\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
9 "\x80\xe8\xdc\xff\xff\xff/bin/sh";
10 char *overflow = (char *)
11 calloc(81, sizeof(char));
12 char **args = (char **) calloc(3,
13 sizeof (char*));
14 int i, explen=53, offset=76;
15 strncpy(overflow, shellcode,
16 explen);
17 for(i=explen; i<offset; i++)
18 overflow[i] = 42;
19 overflow[offset] = 0x20;
20 overflow[offset+1] = 0xf5;
21 overflow[offset+2] = 0xff;
22 overflow[offset+3] = 0xbf;
23 overflow[offset+4] = 0x0;
24 args[0] = "./breakme";
25 args[1] = overflow;
26 args[2] = 0x0;
27 execv("./breakme", args);
28 }

Figure 12. exploit.c. This is the code to
exploit the buffer overflow in breakme.c

transformed binaries.
Table 2 shows the results of the regression tests. In every

case, every test passed in both the transformed and non-
transformed binaries.

5.3 Transformation Environment

The TXL program must operate on pre-processed source
code. Until preprocessing, it is impossible to know what
portions of the source will be compiled. Furthermore,
typedef flattening may require information from files that
are included by the C file.

We used GCC for the purposes of the experiments. GCC
has its own extensions to C that it adds to the preprocessor
output. Many of these additions are optimization hints for
the compiler, such as specifying the size of types. In order to
handle these extensions, we have extended the C grammar
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Figure 13. The buffer overflow being exploited

Figure 14. The buffer overflow is prevented
using the transformed version of breakme

included with TXL.
The following steps constitute the pipeline for transform-

ing C code. This pipeline can be inserted directly into the
build process of most open source software.

Step 1: Configure and build the program. This en-
sures that all necessary build files are created and that the
program holds the simplifying assumption specified in Sec-
tion 4. From this step we obtain the names of the files that
need to be transformed.

Step 2: Automatically modify the Makefile. Use a
sed script to automatically change the Makefile so that
it produces pre-processed C code instead of object files and
binaries. Finally, update the modification time of each C
file using the touch program. This ensures that make will
attempt to generate object files and binaries in the next step.

Step 3: Generate pre-processed C. Execute make
again for each file that was produced during the initial exe-
cution of make. This time the pre-processed C code will be
produced for each file. The debugging directives found in
the pre-processor output from GCC are removed since the
TXL grammar cannot parse them.

Step 4: Transform the program. Backup the original C
source files and transform each pre-processed C file, over-
writing the original C source file with the transformed out-
put. After all of the files have been transformed, execute
make again to create the transformed program, then restore
the original C source files.

Program Arrays
Fixed

Time
Increase

Regression
Tests

apache 30 -3% No
bind 486 0% Yes
bison 45 -2% Yes
find 6 0% Yes
flex 30 0% No

openssh 221 2% Yes
which 1 1% No
whois 6 1% No

Table 1. Efficiency results of transformed
Linux programs

Program Number
of Tests

Old
Code

Passed

New
Code

Passed
bind 146 146 146
bison 56 56 56
find 5 5 5

openssh 21 21 21

Table 2. Results of regression tests on trans-
formed code

6. Limitations & Future Work

Currently, static, global and extern buffers, and
structs are not transformed. With the exception of
structs, all of these buffers are either allocated on the heap,
or within the block storage segment or data segment of the
executable. Since such buffers cannot result in stack allo-
cated buffer overflows, we do not need to transform them.

There are two types of struct declaration that must be
transformed. The first is arrays of structs and the second
is declarations involving structs which contain arrays. A
lookup table of each struct type must be generated to de-
termine which contain arrays. For each matching declara-
tion, the same algorithm that is outlined in Section 4 should
be followed.

7. Conclusions

The number of vulnerabilities found in software contin-
ues to rise each year. There have been many proposed so-
lutions to this problem, many of which work very well, but
often without guarantees.

Our solution guarantees that current and future stack
buffer overflow attack vectors will fail when used against
a transformed program, since the heap does not contain re-
turn addresses. Our solution does not fix the bug that causes
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a buffer overflow, but it does mitigate the risk of such a bug
by preventing the attacker from inserting executable instruc-
tions, such as shell instructions, and overwriting the return
address to jump to those instructions.

Furthermore, our technique preserves the semantics of
the program. This allows Gemini to be inserted into the
regular development process effortlessly. The performance
associated with using heap memory instead of stack mem-
ory will increase with the amount of use the stack allocated
buffers receive, and by the number of times the functions
containing the arrays are called.

A fortunate side-effect of our technique is that by insert-
ing more buffers onto the heap, the heap memory becomes
perturbed. This perturbation lends itself to thwarting cur-
rent and future heap buffer overflow attack vectors.

The tool which applies our technique, as well as source
code examples from this paper are available from our web-
site [11].
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