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Abstract

Software clustering algorithms are used to create
high-level views of a system’s structure using source
code-level artifacts. Software clustering is an active
area of research that has produced many clustering al-
gorithms. However, we have seen very little work that
investigates how the results of these algorithms can be
evaluated objectively in the absence of a benchmark de-
composition, or without the active participation of the
original designers of the system.

Ideally, for a given system, an agreed upon refer-
ence (benchmark) decomposition of the system’s struc-
ture would exist, allowing the results of various clus-
tering algorithms to be compared against it. Since such
benchmarks seldom exist, we seek alternative methods
to gain confidence in the quality of results produced by
software clustering algorithms.

In this paper we present a tool that supports the eval-
uation of software clustering results in the absence of
a benchmark decomposition.

1. Introduction & Background
Maintaining large and complex software systems is

a daunting task. Poor software maintenance practices
often lead to a system’s premature retirement, or ne-
cessitates significant restructuring in order to keep the
source code in manageable condition. There are many
causes for these poor maintenance practices. Little can
be done about practical issues such as limited main-
tenance budgets, lack of access to the original devel-
opers and designers of the system, and short devel-
opment schedules. However, if software maintainers
have a thorough understanding of the underlying sys-
tem structure, it is more likely that changes to the
source code can be performed without deviating from
the system design and architecture. Additionally, if the
source code structure is documented, new maintenance
developers will require less time to become productive.

The best way to gain insight into a system’s struc-
ture is to have access to accurate documentation. Un-
fortunately system documentation is often not up to
date, if it exists at all. One way that researchers
have addressed this problem is by developing software
clustering algorithms and tools that produce high-level
views of a system’s structure directly from its source
code. Because clustering techniques use a variety of cri-
teria to decompose a software system into clusters, it is
not surprising that these algorithms produce different
results when applied to the same system.

The above issues further complicate things for soft-
ware practitioners who are trying to understand the
structure of complex systems. A manual analysis of the
source code is tedious, and may not even be possible,
because of its large number of components and depen-
dencies. Clustering algorithms automate this analysis.

Many of the clustering techniques published in the
literature can be categorized by the way they estab-
lish clusters. Hutchens and Basili [7] developed an
algorithm that clusters procedures into modules by
measuring the interaction between pairs of procedures.
Schwanke et al. [16, 17] introduced the notion of using
design principles such as low coupling and high cohe-
sion to create clusters. Choi and Scacchi [4] describe a
clustering technique based on maximizing the cohesive-
ness of clusters by evaluating the exchange of resources
between modules. Hausi Müller et al. [15] implemented
several software clustering heuristics in the Rigi tool
that (a) measure the relative strength between inter-
faces, (b) identify omnipresent modules, and (c) use
similarity of module names. Clustering based on simi-
lar patterns in implementation information (e.g., mod-
ule file names) has been investigated by Anquetil et
al. [2, 3]. Concept analysis [10, 19, 1] has also been ex-
plored in the software clustering research. Our research
is based on using optimization techniques [12, 5, 11, 14]
to determine clusters.



Now that a plethora of clustering approaches exist,
the validation of clustering results is starting to at-
tract interest from the Software Engineering research
community. Many of the clustering techniques pub-
lished in the literature present case studies where the
results are evaluated by the authors or by the develop-
ers of the system being studied. This evaluation tech-
nique is very subjective. Moreover, the literature often
does not describe the types of systems for which a clus-
tering technique does not perform well. For example,
our clustering technique, named Bunch [12, 5, 11, 14],
forms clusters based on maximizing the cohesiveness
of the clusters, while minimizing the inter-cluster cou-
pling. While we think that this technique is good for
many types of systems, it is not suitable to all sys-
tems. As an example, Bunch may not provide good
results for systems whose architecture is event driven
(e.g., UI code), or whose architecture loads system re-
sources dynamically1.

The issues described above should be considered, es-
pecially when the decompositions produced by different
clustering algorithms differ dramatically. Recently, re-
searchers have begun developing infrastructure to eval-
uate clustering techniques by proposing similarity mea-
surements [2, 3, 13]. These measurements enable the
results of clustering algorithms to be compared to each
other, and preferably to be compared to an agreed upon
“benchmark” standard. A high similarity value should
provide confidence that the clustering algorithm is pro-
ducing good decompositions.

The remainder of this paper is dedicated to tech-
niques for evaluating the results of clustering algo-
rithms when no standard benchmark exists. We
present a tool we developed that provides a framework
for evaluating clustering techniques. We hope that our
tool will be of value to researchers who are creating or
evaluating clustering algorithms.

2. Establishing Confidence in Software

Clustering Results

In this section we address the problem of how to
gain confidence in a software clustering result when a
reference benchmark standard is not available for com-
parison. Although significant research emphasis has
been placed on clustering, we have seen little work on
measuring the effectiveness of these techniques. The
following list outlines the current state of practice for
evaluating software clustering results:

• Software clustering research often revisits the
same set of test cases for evaluation (e.g., linux,

1This problem is interesting and has received very little formal
attention by researchers. We are investigating how dynamic pro-
gram behavior can be integrated into our clustering techniques.

mosaic, etc.). This is appropriate because the
structure of these systems is well understood.
However, for industry adoption of software cluster-
ing technology, researchers must show that these
tools can be applied to a variety of systems suc-
cessfully.

• There are many clustering tools and techniques.
There is value to this diversity, as certain clus-
tering techniques produce better results for some
types of systems than others. However, no work
has been done to help guide end-users to those
techniques that work best for their type of system.

• The interpretation of software clustering results
tends to focus on the overall result (e.g., the en-
tire system), and not on partial results (e.g., a
subsystem) which may also be of value.

• Software Engineering researchers have been inves-
tigating similarity measurements [2, 3, 13] to quan-
tify the level of agreement between pairs of clus-
tering results. Researchers tend to focus on using
these measurements to compare clustering results
directly; however, we know of no work that tries
to find common patterns in clustering results that
are produced by a family of different clustering al-
gorithms.

• The importance of evaluating clustering tech-
niques has been investigated by Koschke and
Eisenbarth [9]. Their paper describes several tech-
niques for comparing the results of a clustering
algorithm to a reference decomposition. The au-
thors also describe a consensus-driven approach
for creating a reference decomposition. However,
their approach for establishing the reference de-
composition is manual, requiring teams of software
engineers.

To address some of the problems mentioned above,
we propose a framework that supports a process for
automatically creating views of a system’s structure
that are based on common patterns produced by vari-
ous clustering algorithms. The initial step in our pro-
cess clusters a system many times using different clus-
tering algorithms. For each clustering run, all of the
modules that appear in the same cluster are recorded.
Using this information our framework presents consol-
idated views of the system structure to the user. By
using a collection of clustering algorithms we “aver-
age” the different clustering results and present views
based on common agreement across the various clus-
tering algorithms. In the next section we introduce
our framework, which we have implemented and made



Figure 1. The User Interface of the CRAFT Tool

available to researchers on the world wide web at
http://serg.mcs.drexel.edu/bunch/CRAFT.

3. Our Framework - CRAFT

In Figure 1 we illustrate the user interface of
our clustering analysis tool, which we call CRAFT
(Clustering Results Analysis Framework and Tools).
The main window is organized into two sections. The
section at the top of the window collects general pa-
rameters, and the section at the bottom of the window
accepts thresholds that apply to a particular analysis
service. Our tool currently supports two such services,
Confidence Analysis and Impact Analysis, which are
discussed later in this section.

The overall goal of the CRAFT framework is to
expose common patterns in the results produced by
different clustering algorithms. By highlighting the
common patterns, we gain confidence that agreement
across a collection of clustering algorithms is likely to
reflect the underlying system structure. We are also
interested in identifying modules/classes that tend to
drift across many clusters, as modifications to these
modules/classes may have a large impact on the over-
all system structure.

As shown in Figure 2, the CRAFT architecture con-
sists of the following subsystems:

• The User Interface: CRAFT obtains informa-
tion from the user to guide the collection, process-
ing and visualization of clustering results.

• Clustering Services: The actual clustering pro-
cess is externalized to a dynamically loadable clus-
tering driver. The clustering driver is responsi-
ble for partitioning a graph that represents the
components and dependencies of a software sys-
tem into a set of non-overlapping clusters. The
CRAFT framework invokes the clustering driver
multiple times based on the value provided by the
user in the Number of Runs entry field.

• Data Analysis Services: The results of the clus-
tering activity are stored in a relational database.
For each clustering run, every pair of modules in
the system is recorded to indicate if the modules
in the pair are in the same or different clusters.
The repository of clustering results supports two
types of analyses: Confidence Analysis and Impact
Analysis. Confidence Analysis produces a decom-
position of the system based on common trends
in the clustering data. Impact Analysis examines
each module in the system to determine how it
relates to all of the other modules in the system
with respect to its placement into clusters. Con-
fidence Analysis helps users gain confidence in a



clustering result when no reference decomposition
exists. Impact Analysis helps users perform local
analyses, which is much simpler than analyzing
the entire decomposition of a system.

• Visualization: Once the results of the clustering
analysis have been produced, our tool presents the
results in diagrammatic form.

We next present a small example illustrating the ca-
pabilities of the CRAFT framework followed by a de-
tailed description of the above mentioned services.
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Figure 2. The Architecture of the CRAFT
Tool

3.1. A Small Example
In Figure 3 we illustrate a small example to help ex-

plain the usage of the CRAFT framework. The Mod-
ule Dependency Graph (MDG), which is illustrated
at the upper-left corner of the figure, shows a system
consisting of 5 modules {M1,M2,M3,M4,M5} with
6 dependencies between the modules. The MDG is
a generic, language independent representation of the
structure of the system’s source code components. This
representation includes all of the modules (classes) in
the system and the set of dependencies that exist be-
tween the modules (classes).

Intuitively, based on the dependencies between the
modules, we expect that {M1,M2} and {M4,M5}
should appear in the same cluster. We also expect that
module M3 is equally likely to appear in the {M1,M2}
or {M4,M5} cluster since it is isomorphic to both of
them.

We executed CRAFT with a setting that clustered
the example system 100 times. The data from the clus-
tering results repository is shown on the bottom-left
corner of Figure 3. Each relation in the repository in-
dicates the frequency that a pair of modules appears
in the same cluster. Visual inspection of this data con-
firms that modules M1 and M2, along with modules

M4 and M5 appear in the same cluster 100% of the
time. The data also shows that module M3 appears
in the {M1,M2} cluster 57% of the time and in the
{M4,M5} cluster 43% of the time.

The results of the Impact Analysis are shown in the
center of Figure 3. To conserve space, we have config-
ured the CRAFT user interface to show only the mod-
ules that exceed an upper threshold (as shown by the ↑
icon) that was selected by the user. In Section 3.4.2 we
describe additional features of the Impact Analysis ser-
vice inclusive of the thresholds that can be specified by
the user. The Impact Analysis results clearly show that
modules M1 and M2 always appear together, modules
M4 and M5 always appear together, and that module
M3 does not appear in any particular cluster consis-
tently (the icon for M3 cannot be expanded).

On the right-side of Figure 3 we show the results of
the Confidence Analysis. The partition of the system
shown in the Confidence Analysis result is consistent
with our intuitive decomposition, as well as the view
produced by the Impact Analysis service. Note that the
edges shown in Figure 3 do not depict dependencies in
the system being studied. The edges instead represent
the frequency percentage that the two modules appear
in the same cluster based on all of the clustering runs.
The cluster containing only module M3 does not nec-
essarily indicate that this module appears alone in any
of the clustering results. In the Confidence Analysis
visualization, singleton clusters should be interpreted
as modules that do not appear in any particular cluster
consistently.

Given such a small example, the value of having mul-
tiple views of the clustering results data is not appar-
ent. In Section 4, where we present the results of a
case study on a non-trivial example, the benefits of the
two views becomes more obvious. Now that a simple
example has been has been presented, we return to dis-
cussing the architecture and services of CRAFT.

3.2. The User Interface

The user interface of our tool, which is shown in
Figure 1, collects information that is necessary to ana-
lyze the results of a collection of clustering algorithms.
The key information collected on the user interface is
the text file name of the MDG, the number of times
the clustering step will be performed (described in Sec-
tion 3.3), the name of a Java Bean that will perform
the clustering activities, and the thresholds that are
used by the data analysis and visualization services.
The tab at the bottom of the window is used to select
the analysis service to be performed, and to collect the
parameters associated with each analysis service.
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Figure 3. A Small Example

3.3. The Clustering Service

Prior to using our tool, a clustering driver class must
be created and packaged as a Java Bean. The respon-
sibility of this driver is to accept as input: (a) the file
name of the MDG, (b) the name of an output file that
the clustering driver is expected to produce, (c) the
current run number and (d) the collection of the pa-
rameters specified on the CRAFT user interface. The
clustering driver encapsulates the algorithm(s) used to
cluster the system. The input file is provided in our
MDG file format, and the output file must adhere to
our SIL file format. Furthermore, the clustering driver
must extend the AnalysisTool.IClusterHelper in-
terface, which is included in the distribution of our
tool. The clustering analysis tool, programmer and
user documentation, along with associated file format
specifications can be obtained online at the Drexel Un-
viersity Software Engineering Research Group (SERG)
web page at http://serg.mcs.drexel.edu/bunch/CRAFT.

The need to create an external clustering driver is
consistent with our philosophy of developing tools that
can be used by other researchers in the Software En-
gineering community. Our approach allows researchers
to create clustering drivers in the Java programming
language. Clustering tools not developed in Java can
also be integrated into our framework using Java’s
JNI [8] capability to wrap tools developed in other
programming languages. For the convenience of the
user, we have created and included two drivers with
our tool. Both drivers are based on algorithms sup-
ported by Bunch. Specifically:

• class bunchexper.ClusterHelper: This cluster-
ing driver uses the Bunch NAHC clustering algo-
rithm [12, 11, 14]. All of the algorithms supported

by Bunch use a randomized optimization approach
to form clusters. Thus, repeated runs of Bunch,
with the same algorithm, rarely produce the exact
same result.

• class bunchexper.ClusterHelperExt: Based on
the number of clustering runs specified by the user,
this driver applies the Bunch NAHC clustering al-
gorithm 25% of the time, the Bunch SAHC algo-
rithm 25% of the time, our generic hill climbing
algorithm 40% of the time, and our Genetic Algo-
rithm [5] 10% of the time.

The generic hill climbing algorithm can be tuned
using configuration parameters to behave like any
algorithm on the continuum between our NAHC
and SAHC hill climbing algorithms [12]. Overall,
10 of the Bunch clustering algorithms are included
in the bunchexper.ClusterHelperExt driver. In
addition to the NAHC, SAHC and Genetic algo-
rithms, 7 different configurations of the generic hill
climbing algorithm are used.

3.4. The Data Analysis Service

Once the clustering activity finishes, the data asso-
ciated with each clustering run is stored in the Cluster-
ing Results Repository. Next, the data is processed by
our analysis tools to support the construction of useful
views of the data. Our goal is to consolidate the di-
versity in the results produced by the set of clustering
tools so that common patterns can be identified. This
approach has shown that good decompositions can be
produced in the presence of a set of clustering algo-
rithms. Instead of relying on a benchmark decompo-
sition to evaluate the result, the result produced by



CRAFT is likely to be good because the set of cluster-
ing algorithms “reached a consensus”.

As mentioned above, the first step performed dur-
ing data analysis is the consolidation of the data that
has been saved in the clustering results repository. Let
S = {M1,M2, . . .Mn} be the set of all modules in the
system. For each distinct pair of modules (Mi,Mj),
where 1 ≤ i, j ≤ |S|, and Mi 6= Mj , we calculate
the frequency (α) that this pair appears in the same
cluster. Given that the clustering driver executes Π
independent runs, the number of times that a pair of
modules can appear in the same cluster is bounded by
0 ≤ α ≤ Π. The principle that guides our analysis is
that the closer α is to Π, the more likely that the pair
of modules belongs to the same cluster. During the
first step of the data analysis, the consolidated data is
saved in the Clustering Results Repository so that it
can be used by our data analysis tools.

Given a system consisting of n modules that has
been clustered Π times, let αi,j be the number of times
that Modules Mi and Mj appear in the same clus-
ter. We also define C[m1,m2, α] as the schema2 for
the data in the clustering repository that includes all
of the {Mi,Mj , αi,j} triples. Each {Mi,Mj , αi,j} rela-
tion represents the number of times that Module Mi

and Module Mj appear in the same cluster.
For convenience we also define D to be a view on C

such that all of the triples in D are sorted in descending
order based on D[α].

Now that the above definitions have been presented,
we turn our attention to describing the two data anal-
ysis services provided by CRAFT.

3.4.1 Confidence Analysis Tool

The Confidence Analysis Tool (CAT) processes the tu-
ples in the Clustering Results Repository to produce
a reference decomposition of a software system. Let β
represent a user-defined threshold value, which is set
on the user interface (see the left side of Figure 1).
Given the ordered set of tuples in the Clustering Re-
sults Repository (i.e., set D), the user specified thresh-
old β and the set of all of the modules in the system
(i.e., set S), we create the reference decomposition by
applying Algorithm 1.

As Algorithm 1 shows, the first step in the CAT pro-
cess involves forming an initial cluster by taking the re-
lation from D with the largest α value. The closure of
the modules in this relation is then calculated and new
modules are added to the cluster by searching for addi-

2Given a relation c for the schema C, we use the nota-
tion c[m1, m2] to represent the projection of m1 and m2 on
C. For example, given the relation c ={parser,scanner,10},
c[m1, m2] ={parser,scanner}.

tional relations in D such that one of the modules in the
triple is already contained in the newly formed cluster,
and the α value exceeds the user defined threshold β.

Algorithm 1: Confidence Analysis Algorithm

ConfidenceAnalysis(Set: D, S; Threshold: β)
Let P be a new partition of the system.
foreach relation d ∈ D sorted
decreasing by d[α] where d[α] ≥ β do

if (d[M1] or d[M2]) is in S then
1. Create a new cluster C and add it to
partition P. Add the modules from rela-
tion d (d[M1] and/or d[M2]) to C that are
in S. Remove the modules that have just
been added to the new cluster C from S.

2. CloseCluster: Search for additional
relations r ∈ D that have r[α] ≥ β. Se-
lect the relation with the highest r[α] value
such that one module from r is in C and
the other module from r is in S. Add the
module from r that is in S to C. Once
added to C, remove this module from S.
Repeat this process until no new modules
can be added to C.

end
end
foreach module s remaining in S do

Create a new cluster C and add it to P.
Add module s to cluster C.

end
return (partition P)

When adding modules to clusters, care is taken so
that each module in set S is assigned to no more than
one cluster, otherwise we would not have a valid par-
tition of the MDG. After the closure of the cluster is
calculated, a new cluster is created and the process
repeats. Eventually, all modules that appear in rela-
tions in D that have an α value that exceeds the user
defined threshold β will be assigned to a cluster. In
some cases, however, there may be modules for which
no relation in D exists with a large enough α value to
be assigned to a cluster. In these instances, for each
remaining unassigned module in S, a new cluster is
created containing a single module. This condition is
not an indication that the module belongs to a single-
ton cluster, but instead is meant to indicate that the
module is somewhat “unstable” in its placement, as it
tends not to get assigned to any particular cluster.

The final step performed by the CAT tool is to
compare the decomposition that it produced with each
of the decompositions that were generated during the
clustering process. This is accomplished by measur-



ing the similarity between the result produced by the
CAT tool with each result produced by the clustering
algorithms. CRAFT currently provides the user with
the average, standard deviation, minimum and maxi-
mum values of 3 similarity measurements. The similar-
ity measurements used are Precision/Recall [2, 3], Ed-
geSim, and MeCl. The Precision/Recall and EdgeSim
measurements evaluate the similarity of the clusters in
two distinct decompositions of a system. MeCl is a
distance similarity measurement that determines the
number of logical operations required to convert one
decomposition into the other. We discuss the EdgeSim
and MeCl measurements in one of our other papers [13].
Using similarity measurements is a good “sanity check”
to ensure that the information provided by CRAFT is
representative of the individual clustering results. If
the similarity measurements are high, we are confident
that the results produced by CRAFT are good.

In this section we illustrated how the CAT tool can
be used as a “reference decomposition generator”. Such
a tool is useful when a standard benchmark decompo-
sition does not exist. We would also like to point out
that the singleton clusters produced by the CAT tool
provide useful information, as they identify modules
that are not assigned to any particular cluster with
regularity.

3.4.2 Impact Analysis Tool

The Impact Analysis Tool (IAT) helps developers un-
derstand the local impact of changing a module. This
tool is appropriate for specialized analyses where the
developer wants to quickly find the most closely related
modules to a specific module in the system. The IAT
helps developers understand which modules are most
likely to be impacted by a change, which modules are
least likely to be impacted by a change, and the mod-
ules for which the impact of a change is unknown.

Like the CAT tool, the IAT uses the data in the
Clustering Results Repository. Given a module in the
system, the Repository (D) is queried to determine
the set of related modules (a dependency exists in the
MDG) and their associated α values. If the α value
exceeds an upper threshold (γ), or is below a lower
threshold (δ) then a we can generally infer if the mod-
ule is in the same or in a different cluster, respectively.
However, if we find that γ < α < δ we can infer that
the module is somewhat, but not very strongly, depen-
dant on the other module. The thresholds γ and δ are
set on the CRAFT user interface (see the right side of
Figure 1). The detailed behavior of IAT is shown in
Algorithm 2.

CRAFT requires the user to enter an upper thresh-
old (γ), and an optional lower threshold (δ). By de-

fault, the IAT tool produces results for all of the mod-
ules in the system. However, the user may select which
modules will be included in the visualized results. To
limit the modules considered by the IAT tool, the user
presses the Apply Filter button on the CRAFT user
interface (Figure 1). Once the IAT tool finishes pro-
cessing the data in the Clustering Results Repository,
the output is visualized using a hierarchial presenta-
tion of the data. Figure 4 illustrates sample output for
the IAT tool. Notice how an up arrow (↑) is associated
with modules that are above the upper threshold, and
a down arrow (↓) is associated with modules that are
below the lower threshold. Beside each module name
is the normalized α value (α/Π× 100) associated with
the modules relation to its parent. For example, in
Figure 4, we see that module TimerQueue is very as-
sociated with module JRootPane (100%) but not with
module MultiToolTipUI (14%).

Algorithm 2: Impact Analysis Algorithm

ImpactAnalysis(Set: D, S; Threshold: γ, δ)
Let R be the root of the results tree.
foreach module s ∈ S do

Let Q = S − s.
Let Is be a node that is inserted into

tree R to represent module s.
foreach q ∈ Q do

Find the relation d ∈ D where
d[M1,M2] contains modules q and s.

switch d[α] do
case (d[α] ≤ γ) :
Is.Below ← Is.Below ∪ q

case (d[α] ≥ δ) :
Is.Above← Is.Above ∪ q

otherwise
Is.Neither ← Is.Neither ∪ q

end
end

end
return (R)

The IAT tool also allows the user to select a neigh-
borhood. By default the neighborhood is 1, however the
user may set this to a maximum value that is equal to
to the number of modules in the system. If a neigh-
borhood value greater than 1 is provided, the IAT tool
expands (if necessary) each node in the IAT results
window to show modules that are transitively related
to the selected module.

3.5. The Visualization Service
Once the data analysis is performed, the results are

visualized. The actual visualization of the results de-



pends on whether the Confidence or the Impact anal-
ysis was performed in the data analysis step. For the
CAT tool, the result is shown using the dotty [6] tool.
For the IAT tool, the visualization of the results is pre-
sented hierarchically in a window that can be navigated
by the user (see Figures 3 and 4).

4. Case Study

In this section we present a case study to illustrate
the benefits of the CRAFT framework. Although we
used one of the clustering drivers that was described in
Section 3.3, we hope that other researchers will build
clustering drivers to integrate additional clustering al-
gorithms into CRAFT.

The system that we analyzed is the Swing [18] class
library, which is part of the Java Developers Kit(JDK).
The Swing library consists of 413 classes that have 1513
dependencies between them. The results of the case
study are based on clustering Swing 100 times using
our bunchexper.ClusterHelperExt clustering driver.
We chose the bunchexper.ClusterHelperExt cluster-
ing driver, which we described in Section 3.3, because it
uses a family of 10 (i.e., NAHC, SAHC, 7 variations of
our generic hill climbing algorithm, and a genetic algo-
rithm) clustering algorithms that have been integrated
into Bunch.

Similarity
Measurement Avg Min Max Stdev

MeCl 96.5% 92.1% 100.0% 0.17
EdgeSim 93.1% 89.3% 98.6% 0.80
Precision/Recall 82.5% 54.8% 91.4% 1.97

Table 1. Similarity Results for CAT Test

The results of the Confidence Analysis Test are il-
lustrated in Figure 5. In Table 1 we show the similar-
ity measurements [13] indicating how close the clusters
produced in the Confidence Analysis Test are to each
of the 100 clustering results. Because of space restric-
tions, the CAT result displayed in Figure 5 only shows
a part of the Swing package. The entire decomposition
for Swing can be viewed online from the CRAFT web-
page (http://serg.mcs.drexel.edu/bunch/CRAFT). In
Figure 4 we illustrate the results of the IAT test. Sev-
eral interesting conclusions can be made from the re-
sults of this case study:

• Many of the edges shown in the CAT visualization
have large values (shown as labels on the edges).
Recall that the edges in the CAT result do not
represent the dependencies in the system, but are
used to indicate the frequency that pairs of mod-
ules appear in the same cluster. Since many of the

edge labels are high, the results indicate that there
is general agreement across the 100 clustering re-
sults.

Figure 4. Swing: Impact Analysis Results

• The similarity measurements shown in Table 1 are
high which is a good indication that the CAT re-
sults are representative of the underlying system
structure.

System Modules/ Execution
Name Classes Edges Time (sec.)

ispell 24 103 12
rcs 29 163 13
bison 37 179 18
grappa 86 295 56
Swing 413 1513 730

Table 2. Performance of the CRAFT Tool

• The Impact and Confidence Analysis results are
based on the same set of data. Figures 4 and 5
illustrate how both visualizations of this data can
be useful. The CAT result in Figure 5 shows
a partial reference decomposition for Swing that
was produced by CRAFT. This result is help-
ful for gaining some intuition into Swing’s over-
all structure. However, the obvious complexity
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Figure 5. Confidence Analysis Result: A Partial View of Swing’s Decomposition

of the CAT results may overwhelm developers
who are trying to understand the potential im-
pact associated with modifying a particular class
within the Swing package. The IAT results ad-
dress this concern by highlighting the modules
that are most likely to be impacted by a change
to a single module. For example, Figure 4 illus-
trates that the JRootPane, JApplet, JWindow and

SystemEventQueueUtilities classes always ap-
pear in the same cluster as the TimerQueue class.

• The performance of CRAFT seems to be good for
medium to large systems (up to 1000 modules).
However, we have not tried the CRAFT tool on
very large systems. In Table 2 we show the per-
formance of the CRAFT tool for systems of vari-



ous sizes that were clustered 100 times using the
bunchexpir.ClusterHelperExt clustering driver.

5. Conclusions
In this paper we investigated how the diversity in

results produced by different clustering algorithms can
be used to generate a reference decomposition of a soft-
ware system. Koschke and Eisenbarth [9] state that a
reference decomposition is necessary in order to com-
pare the strengths and weaknesses of individual clus-
tering algorithms. From the perspective of a researcher
we agree with this claim, but we also argue that a refer-
ence decomposition is useful to software practitioners
who are trying to gain confidence in the results pro-
duced by a clustering algorithm.

We also presented the CRAFT framework, which
can generate a reference decomposition automatically.
Manual construction of a reference decomposition is
tedious, but the results will tend to be good because
knowledge from the designers of the system is used.
However, a formal process [9] is needed to guide the
manual construction of the reference decomposition so
that personal biases about the system structure are
minimized. As future work we would like to compare
the CAT results from CRAFT to manually produced
decompositions that have been created by other re-
searchers.

We have also shown how the process of deriving the
reference decomposition can lead to other useful results
such as Impact Analysis.

Finally, the CRAFT framework can be downloaded
over the Internet, and is capable of being extended by
other researchers. We hope that this work will trigger
additional interest in techniques to evaluate software
clustering results.
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