
Integration Testing

Chapter 13

INT–2

Integration Testing

 Test the interfaces and interactions among separately tested
units

 Three different approaches
 Based on functional decomposition
 Based on call graphs
 Based on paths

INT–3

Functional Decomposition

 Functional Decomposition
 Create a functional hierarchy for the software
 Problem is broken up into independent task units, or

functions
 Units can be run either

 Sequentially and in a synchronous call-reply manner
 Or simultaneously on different processors

 Used during planning, analysis and design

INT–4

Functional Decomposition of the SATM System

1

A 10 B

D E 11 12 13 14 15

2 3 4 5 6 7 8 9

C

16 17 F 22

18 19 20 21 23 24 25 26 27

Table 1: SATM Units and Abbreviated Names
Unit Level Unit Name
1! 1! SATM System
A! 1.1! Device Sense & Control
D! 1.1.1! Door Sense & Control
2! 1.1.1.1 ! Get Door Status
3! 1.1.1.2 ! Control Door
4! 1.1.1.3 ! Dispense Cash
E! 1.1.2! Slot Sense & Control
5! 1.1.2.1 ! WatchCardSlot
6! 1.1.2.2 ! Get Deposit Slot Status
7! 1.1.2.3 ! Control Card Roller
8! 1.1.2.3 ! Control Envelope Roller
9! 1.1.2.5 ! Read Card Strip
10! 1.2! Central Bank Comm.
11! 1.2.1! Get PIN for PAN
12! 1.2.2! Get Account Status
13! 1.2.3! Post Daily Transactions

Unit Level Unit Nam
B! 1.3! Terminal Sense & Control
14! 1.3.1! Screen Driver
15! 1.3.2! Key Sensor
C! 1.4! Manage Session
16! 1.4.1 ! Validate Card
17! 1.4.2! Validate PIN
18! 1.4.2.1 ! GetPIN
F! 1.4.3 ! Close Session
19! 1.4.3.1 ! New Transaction Request
20! 1.4.3.2 ! Print Receipt
21! 1.4.3.3 ! Post Transaction Local
22! 1.4.4! Manage Transaction
23! 1.4.4.1 ! Get Transaction Type
24! 1.4.4.2 ! Get Account Type
25! 1.4.4.3 ! Report Balance
26! 1.4.4.4 ! Process Deposit
27! 1.4.4.5 ! Process Withdrawal

Example functional decomposition

INT–5

Decomposition-based integration

 Four strategies
 Top-down
 Bottom-up
 Sandwich
 Big bang

INT–6

Top-Down Integration

 Top-down integration strategy
 Focuses on testing the top layer or the controlling

subsystem first (i.e. the main, or the root of the call tree)

 The general process in top-down integration strategy is
 To gradually add more subsystems that are

referenced/required by the already tested subsystems when
testing the application

 Do this until all subsystems are incorporated into the test

INT–7

Top-Down Integration

 Special code is needed to do the testing
 Test stub

 A program or a method that simulates the input-output
functionality of a missing subsystem by answering to the
decomposition sequence of the calling subsystem and
returning back simulated data

INT–8

Top-Down Integration

Top Subtree
(Sessions 1-4)

Second Level Subtree
(Sessions 12-15)

Botom Level Subtree
(Sessions 38-42)

Top-Down integration example

INT–9

Top-Down integration issues

 Writing stubs can be difficult
 Especially when parameter passing is complex.
 Stubs must allow all possible conditions to be tested

 Possibly a very large number of stubs may be required
 Especially if the lowest level of the system contains many

functional units

 One solution to avoid too many stubs
 Modified top-down testing strategy
 Test each layer of the system decomposition individually

before merging the layers
 Disadvantage of modified top-down testing

 Both, stubs and drivers are needed

INT–10

Bottom-Up integration

 Bottom-Up integration strategy
 Focuses on testing the units at the lowest levels first
 Gradually includes the subsystems that reference/require

the previously tested subsystems
 Do until all subsystems are included in the testing

 Special driver code is needed to do the testing
 The driver is a specialized routine that passes test cases to

a subsystem
 Subsystem is not everything below current root module,

but a sub-tree down to the leaf level

INT–11

Bottom-up integration example

Top Subtree
(Sessions 29-32)

Second Level Subtree
(Sessions 25-28)

Bottom Level Subtree
(Sessions 13-17)

INT–12

Bottom-Up Integration Issues

 Not an optimal strategy for functionally decomposed systems
 Tests the most important subsystem (user interface) last

 More useful for integrating object-oriented systems
 Drivers may be more complicated than stubs
 Less drivers than stubs are typically required

INT–13

Sandwich Integration

 Combines top-down strategy with bottom-up strategy
 Less stub and driver development effort
 Added difficulty in fault isolation
 Doing big-bang testing on sub-trees

INT–14

Sandwich integration example

INT–15

Integration test metrics

 The number of integration tests for a decomposition tree is
the following

 For SATM have 42 integration test sessions, which
correspond to 42 separate sets of test cases

 For top-down integration nodes – 1 stubs are needed
 For bottom-up integration nodes – leaves drivers are

needed
 For SATM need 32 stubs and 10 drivers

Sessions = nodes – leaves + edges

INT–16

Call Graph-Based Integration

 The basic idea is to use the call graph instead of the
decomposition tree

 The call graph is a directed, labeled graph
 Vertices are program units; e.g. methods
 A directed edge joins calling vertex to the called vertex
 Adjacency matrix is also used
 Do not scale well, although some insights are useful

 Nodes of high degree are critical

INT–17

SATM call graph example

1

5

7

20

21

9

10

12

11

16

17 18 19

22

23

24

25
26

14
2 36 8

4

13

15

27

Call Graph of the SATM System

Look a adjacency
matrix p204

INT–18

Call graph integration strategies

 Two types of call graph based integration testing
 Pair-wise Integration Testing
 Neighborhood Integration Testing

INT–19

Pair-Wise Integration

 The idea behind Pair-Wise integration testing
 Eliminate need for developing stubs / drivers
 Use actual code instead of stubs/drivers

 In order not to deteriorate the process to a big-bang strategy
 Restrict a testing session to just a pair of units in the call

graph
 Results in one integration test session for each edge in the

call graph

INT–20

Some Pair-wise Integration Sessions

1

5

7

20

21

9

10

12

11

16

17 18 19

22

23

24

25
26

14
2 36 8

4

13

15

27

Pair-wise integration session example

INT–21

Neighbourhood integration

 The neighbourhood of a node in a graph
 The set of nodes that are one edge away from the given

node

 In a directed graph
 All the immediate predecessor nodes and all the immediate

successor nodes of a given node

 Neighborhood Integration Testing
 Reduces the number of test sessions
 Fault isolation is more difficult

INT–22

1

5

7

20

21

9

10

12

11

16

17 18 19

22

23

24

25
26

14
2 36 8

4

13

15

27

Two Neighborhood Integration Sessions
Neighbourhood integration example

Neighbourhoods
for nodes 16 & 26

INT–23

Pros and Cons of Call-Graph Integration

 Aim to eliminate / reduce the need for drivers / stubs
 Development effort is a drawback

 Closer to a build sequence
 Neighborhoods can be combined to create “villages”
 Suffer from fault isolation problems

 Specially for large neighborhoods

INT–24

Pros and Cons of Call-Graph Integration – 2

 Redundancy
 Nodes can appear in several neighborhoods

 Assumes that correct behaviour follows from correct units and
correct interfaces
 Not always the case

 Call-graph integration is well suited to devising a sequence of
builds with which to implement a system

INT–25

Path-Based Integration

 Motivation
 Combine structural and behavioral type of testing for

integration testing as we did for unit testing

 Basic idea
 Focus on interactions among system units
 Rather than merely to test interfaces among separately

developed and tested units

 Interface-based testing is structural while interaction-based is
behavioral

INT–26

Extended Concepts – 1

 Source node
 A program statement fragment at which program execution

begins or resumes.
 For example the first “begin” statement in a program.
 Also, immediately after nodes that transfer control to

other units.

 Sink node
 A statement fragment at which program execution

terminates.
 The final “end” in a program as well as statements that

transfer control to other units.

INT–27

Extended Concepts – 2

 Module execution path
 A sequence of statements that begins with a source node

and ends with a sink node with no intervening sink nodes.

 Message
 A programming language mechanism by which one unit

transfers control to another unit.
 Usually interpreted as subroutine invocations
 The unit which receives the message always returns control

to the message source.

INT–28

MM-Path

 An interleaved sequence of module execution paths and
messages.

 Describes sequences of module execution paths that include
transfers of control among separate units.

 MM-paths always represent feasible execution paths, and
these paths cross unit boundaries.

 There is no correspondence between MM-paths and DD-
paths

 The intersection of a module execution path with a unit is the
analog of a slice with respect to the MM-path function

INT–29

1

2

3 4

5

6

A B1

2

3

4

C1

2

5

3

4

MM-Path Example

 Source nodes
 Sink nodes

MM-path

MEP(C,1) = <1, 2, 4, 5>
MEP(C,2) = <1, 3, 4, 5>

MEP(B,1) = <1, 2>
MEP(B,2) = <3, 4>

MEP(A,1) = <1, 2, 3, 6>
MEP(A,2) = <1, 2, 4>
MEP(A,3) = <5, 6> Module Execution Paths

INT–30

MM-path Graph

 Given a set of units their MM-path graph is the directed graph
in which
 Nodes are module execution paths
 Edges correspond to messages and returns from one unit

to another

 The definition is with respect to a set of units
 It directly supports composition of units and composition-

based integration testing

INT–31

Solid lines indicate messages (calls)
Dashed lines indicate returns from calls

MM-path graph example

MEP(C,2)MEP(A,1)

MEP(A,2)

MEP(A,3)

MEP(B,1)

MEP(C,1)

MEP(B,2)

INT–32

MM-path guidelines

 How long, or deep, is an MM-path? What determines the end
points?
 Message quiescence

 Occurs when a unit that sends no messages is reached
 Module C in the example

 Data quiescence
 Occurs when a sequence of processing ends in the

creation of stored data that is not immediately used
(path D1 and D2)

 Quiescence points are natural endpoints for MM-paths

INT–33

MM-Path metric

 How many MM-paths are sufficient to test a system
 Should cover all source-to-sink paths in the set of units

 What about loops?
 Use condensation graphs to get directed acyclic graphs

 Avoids an excessive number of paths

INT–34

Pros and cons of path-based integration

 Hybrid of functional and structural testing
 Functional – represent actions with input and output
 Structural – how they are identified

 Avoids pitfall of structural testing (???)
 Fairly seamless union with system testing
 Path-based integration is closely coupled with actual system

behaviour
 Works well with OO testing

 No need for stub and driver development
 There is a significant effort involved in identifying MM-paths

INT–35

MM-path compared to other methods

Excellent to unit
path level

CompleteExcellentMM-path

Good to faulty
unit

Limited to pairs
of units

AcceptableCall-graph

Good to faulty
unit

Limited to pairs
of units

Acceptable, can
be deceptive

Functional
decomposition

Fault isolation
resolution

Ability to test
co-functionality

Ability to test
interfaces

Strategy

