
State-Based Testing
Part C – Test Cases

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

STC–2

Test Strategies

 Exhaustive
 All Transitions

 Every transition executed at least once
 Exercises all transitions, states and actions
 Cannot show incorrect state is a result
 Difficult to find sneak paths

 All n-transition sequences
 Can find some incorrect and corrupt states

 All round trip paths
 Generated by N+ test strategy

 A prime path of nonzero length that starts and ends at
the same node

STC–3

N+ Test Strategy Overview

 The N+ Test strategy
 Encompasses UML state models
 Testing considerations unique to OO implementations
 It uses a flattened model
 All implicit transitions are exercised to reveal sneak paths
 Relies on an the implementation to properly report resultant

state
 More powerful than simpler state-based strategies

 Requires more analysis
 Has larger test suites
 Look at cost/benefit tradeoff

STC–4

N+ Coverage

 N+ coverage reveals
 All state control faults
 All sneak paths
 Many corrupt state bugs
 Many super-class/sub-class integration bugs
 If more than one from α transition, reveals faults on each

one
 All transitions to the ω states
 Can suggest presence of trap doors when used with

program text coverage analyzer

STC–5

The N+ Test Strategy Development

 Develop a state-based model of the system
 Validate the model using the checklists
 Flatten the model – Expand the statechart
 Develop the response matrix

 Generate the round-trip path tree
 Generate the round-trip path test cases
 Generate the sneak path test cases
 Sensitize the transitions in each test case

 Find input values to satisfy guards for the transitions in the
event path

 Similar to finding path conditions in path testing

STC–6

The 3-player game example

 We will use an extension of the 2-player game as an example
 There is now a third player that may win any of the volleys

Transition Diagram Flattened state model

STC–8

Response Matrix

STC–9

Generate Round-Trip Path Tree (GRTPT)

 Root
 Initial state – use α state with multiple constructors

 First edges
 Draw for each transition out of initial state and add node for

resultant state

 Remaining edges
 Draw for each transition out of a leaf node and add node for

resultant state
 Mark new leaf nodes as terminal nodes, if new leaf is

 Already in the tree
 A final state
 An ω state

STC–10

GRTPT– Traversing the FSM

 Use either a breadth-first or depth-first strategy for traversing
the FSM

 Breadth-first
 Many short test sequences

 Depth-first
 Fewer long test sequences

STC–11

GRTPT – Guarded Transitions

 At least two test conditions are necessary
 Model each true condition

 If several conditional variants can make a guard true,
transcribe one transition for each variant

 Guard is a simple Boolean expression, or contains only
logical "and"

 Then only one transition is needed
 Guard is compound Boolean expression, has at least

one logical "or" operator
 Then one transition is required for each predicate

combination that yields a true result

STC–12

GRTPT – Guarded Transitions – 2

 Guard specifies a relationship that occurs only afer
repeating some event, [counter ≥ 10]

 Test sequence requires at least the number of iterations
to satisfy the condition. The transition is graphed with a
single arc annotated with an asterisk.

 Test at least one false combination
 Tests to cover each guard's false variants are developed for

the sneak attack tests
 Recall variant testing for decision tables – there are

others as well

STC–13

Transition tree for
the 3-player game

STC–14

Generated test
cases

STC–15

Sneak path testing

 Look for Illegal transitions and evading guards
 Transition tree tests explicit behaviour
 We need to test each state’s illegal events
 A test case for each non-checked, non-excluded transition

cell in the response matrix
 Confirm that the actual response matches the specified

response

STC–16

Testing one sneak path

 Put IUT (Implementation Under Test) into the corresponding
state
 May need to have a special built-in test method, as getting

there may take too long or be unstable
 Can use any debugged test sequences that reach the state

 Be careful if there are changes in the test suite

 Apply the illegal event by sending a message or forcing the
virtual machine to generate the desired event

 Check that the actual response matches the specified
response

 Check that the resultant state is unchanged
 Sometimes a new concrete state is acceptable

STC–17

Sneak Path Test Suite

STC–18

Checking Resultant state

 State reporter
 Can evaluate state invariant to determine state of object
 Implement assertion functions

bool isGameStarted() { … }
 After each event appropriate state reporter is asserted

 Test repetition – good for corrupt states
 Repeat test and compare results
 Corrupt states may not give the same result
 Not as reliable as state reporter method

STC–19

Checking Resultant state – 2

 State revealing signatures
 Identify and determine a signature sequence

 A sequence of output events that are unique for the
state

 Analyze specification
 Expensive and difficult

STC–20

Major test strategies in increasing power

 Piecewise
 Every state, every event, every action at least once
 Does not correspond to state model
 Inadequate for testing

 All transitions – minimum acceptable
 Every transition is exercised at least once
 Implies all states, all events, all actions
 Incorrect / Missing event / action pairs are guaranteed
 Does not show incorrect state is a result
 Unless completely specified, sneak paths are not found

STC–21

Major test strategies in increasing power – 2

 All transition k-tuples
 Exercise every transition sequence of k events at least once

 1-tuple is equivalent to all transitions
 Not necessarily all incorrect or corrupt states are found

 All round-trip paths
 Called N+ coverage
 Shortest trip is to loop back once to the same state
 The longest trip depends upon the structure of the FSM

STC–22

Major test strategies in increasing power – 3

 Any sequence that goes beyond a round trip must be part
of a sequence that belongs to another round trip

 Finds all incorrect or missing event/action pairs
 Can find some incorrect or invalid states

 E.g. enter state that mimics correct behaviour for 10
events but becomes corrupt on the 11'th

 N+ strategy relies on state inspector

STC–23

Major test strategies in increasing power – 4

 M-length signature
 Used for opaque systems – cannot determine current state
 A state signature is used to determine the current state of

the IUT
 A sequence of output actions unique for the state
 If the actual state signature is the expected one, then in

the correct state
 To find corrupt states, need to try sequence long enough to

get beyond any possible number of corrupt states, which is
guessed as being M

 Exhaustive

STC–24

Test Suite Size

