
State-Based Testing
Part C – Test Cases

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

STC–2

Test Strategies

 Exhaustive
 All Transitions

 Every transition executed at least once
 Exercises all transitions, states and actions
 Cannot show incorrect state is a result
 Difficult to find sneak paths

 All n-transition sequences
 Can find some incorrect and corrupt states

 All round trip paths
 Generated by N+ test strategy

 A prime path of nonzero length that starts and ends at
the same node

STC–3

N+ Test Strategy Overview

 The N+ Test strategy
 Encompasses UML state models
 Testing considerations unique to OO implementations
 It uses a flattened model
 All implicit transitions are exercised to reveal sneak paths
 Relies on an the implementation to properly report resultant

state
 More powerful than simpler state-based strategies

 Requires more analysis
 Has larger test suites
 Look at cost/benefit tradeoff

STC–4

N+ Coverage

 N+ coverage reveals
 All state control faults
 All sneak paths
 Many corrupt state bugs
 Many super-class/sub-class integration bugs
 If more than one from α transition, reveals faults on each

one
 All transitions to the ω states
 Can suggest presence of trap doors when used with

program text coverage analyzer

STC–5

The N+ Test Strategy Development

 Develop a state-based model of the system
 Validate the model using the checklists
 Flatten the model – Expand the statechart
 Develop the response matrix

 Generate the round-trip path tree
 Generate the round-trip path test cases
 Generate the sneak path test cases
 Sensitize the transitions in each test case

 Find input values to satisfy guards for the transitions in the
event path

 Similar to finding path conditions in path testing

STC–6

The 3-player game example

 We will use an extension of the 2-player game as an example
 There is now a third player that may win any of the volleys

Transition Diagram Flattened state model

STC–8

Response Matrix

STC–9

Generate Round-Trip Path Tree (GRTPT)

 Root
 Initial state – use α state with multiple constructors

 First edges
 Draw for each transition out of initial state and add node for

resultant state

 Remaining edges
 Draw for each transition out of a leaf node and add node for

resultant state
 Mark new leaf nodes as terminal nodes, if new leaf is

 Already in the tree
 A final state
 An ω state

STC–10

GRTPT– Traversing the FSM

 Use either a breadth-first or depth-first strategy for traversing
the FSM

 Breadth-first
 Many short test sequences

 Depth-first
 Fewer long test sequences

STC–11

GRTPT – Guarded Transitions

 At least two test conditions are necessary
 Model each true condition

 If several conditional variants can make a guard true,
transcribe one transition for each variant

 Guard is a simple Boolean expression, or contains only
logical "and"

 Then only one transition is needed
 Guard is compound Boolean expression, has at least

one logical "or" operator
 Then one transition is required for each predicate

combination that yields a true result

STC–12

GRTPT – Guarded Transitions – 2

 Guard specifies a relationship that occurs only afer
repeating some event, [counter ≥ 10]

 Test sequence requires at least the number of iterations
to satisfy the condition. The transition is graphed with a
single arc annotated with an asterisk.

 Test at least one false combination
 Tests to cover each guard's false variants are developed for

the sneak attack tests
 Recall variant testing for decision tables – there are

others as well

STC–13

Transition tree for
the 3-player game

STC–14

Generated test
cases

STC–15

Sneak path testing

 Look for Illegal transitions and evading guards
 Transition tree tests explicit behaviour
 We need to test each state’s illegal events
 A test case for each non-checked, non-excluded transition

cell in the response matrix
 Confirm that the actual response matches the specified

response

STC–16

Testing one sneak path

 Put IUT (Implementation Under Test) into the corresponding
state
 May need to have a special built-in test method, as getting

there may take too long or be unstable
 Can use any debugged test sequences that reach the state

 Be careful if there are changes in the test suite

 Apply the illegal event by sending a message or forcing the
virtual machine to generate the desired event

 Check that the actual response matches the specified
response

 Check that the resultant state is unchanged
 Sometimes a new concrete state is acceptable

STC–17

Sneak Path Test Suite

STC–18

Checking Resultant state

 State reporter
 Can evaluate state invariant to determine state of object
 Implement assertion functions

bool isGameStarted() { … }
 After each event appropriate state reporter is asserted

 Test repetition – good for corrupt states
 Repeat test and compare results
 Corrupt states may not give the same result
 Not as reliable as state reporter method

STC–19

Checking Resultant state – 2

 State revealing signatures
 Identify and determine a signature sequence

 A sequence of output events that are unique for the
state

 Analyze specification
 Expensive and difficult

STC–20

Major test strategies in increasing power

 Piecewise
 Every state, every event, every action at least once
 Does not correspond to state model
 Inadequate for testing

 All transitions – minimum acceptable
 Every transition is exercised at least once
 Implies all states, all events, all actions
 Incorrect / Missing event / action pairs are guaranteed
 Does not show incorrect state is a result
 Unless completely specified, sneak paths are not found

STC–21

Major test strategies in increasing power – 2

 All transition k-tuples
 Exercise every transition sequence of k events at least once

 1-tuple is equivalent to all transitions
 Not necessarily all incorrect or corrupt states are found

 All round-trip paths
 Called N+ coverage
 Shortest trip is to loop back once to the same state
 The longest trip depends upon the structure of the FSM

STC–22

Major test strategies in increasing power – 3

 Any sequence that goes beyond a round trip must be part
of a sequence that belongs to another round trip

 Finds all incorrect or missing event/action pairs
 Can find some incorrect or invalid states

 E.g. enter state that mimics correct behaviour for 10
events but becomes corrupt on the 11'th

 N+ strategy relies on state inspector

STC–23

Major test strategies in increasing power – 4

 M-length signature
 Used for opaque systems – cannot determine current state
 A state signature is used to determine the current state of

the IUT
 A sequence of output actions unique for the state
 If the actual state signature is the expected one, then in

the correct state
 To find corrupt states, need to try sequence long enough to

get beyond any possible number of corrupt states, which is
guessed as being M

 Exhaustive

STC–24

Test Suite Size

