
State-Based Testing
Part B – Error Identification

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

SEI–2

Flattening the statechart

 Statecharts are great for communication, reducing clutter etc.
 They might hide subtle bugs

 e.g. entering a sub-state rather than a super-state

 We need to expand them to full transition diagrams for testing
purposes
 Expansion makes implicit transitions explicit, so they are

not lost
 Expansion is a flat view

 Includes everything from inheritance in OO and sub-
states in statecharts

 An automatable process

SEI–3

Concurrent statechart

SEI–4

Concurrency Hides Problems

 Concurrency hides implicit state combinations
 Hides potential serious defects
 Arise from implicit state combinations

 Explicit violations of implicit prohibitions should be tested

SEI–5

Expanding the Example

SEI–6

Unspecified Event/State Pairs

 State machine models will not include all events for all states
 Implicit transitions may be illegal, ignored, or a specification

omission
 Accepted illegal events lead to bugs called sneak paths
 For testing purposes, we cannot ignore implicit behaviour

 Develop a Response Matrix

SEI–7

Example statechart

SEI–8

Response
matrix

SEI–9

Possible responses to illegal events

SEI–10

Designing responses to illegal events

 Abstract state should not change
 Concrete state may change due to exception handling

 Illegal event design question
 Handle with defensive programming

 Defensive systems
 Handle with precondition contracts

 Cooperative systems

SEI–11

Designing responses to illegal events – 2

 Possible responses
 Raise exception
 Treat message as a noop
 Attempt error recovery
 Invoke abnormal termination

 Tester needs to decide expected responses so actual
responses can be evaluated

SEI–12

State model validation

 A state model must be complete, consistent, and correct
before it is used to generate test cases

 We will look at four validation checklists
 Structure checklist
 State name checklist
 Guarded transition checklist
 Well-formed subclass behaviour checklist
 Robustness checklist

SEI–13

Structure checklist

 There is an initial state with only outbound transitions
 There is a final state with only inbound transitions (if not,

explicit reason is needed)
 No equivalent states
 Every state is reachable from the initial state
 The final state is reachable from all states
 Every defined event and every defined action appears in at

least one transition

SEI–14

Structure checklist

 Except for the initial and final states, every state has at least
one incoming and one outgoing transition

 The events accepted in a particular state are unique or
differentiated by mutually exclusive guards

 Complete specification: For every state, every event is
accepted or rejected (either explicitly or implicitly)

SEI–15

State name checklist

 Poor names are often indications of incomplete or incorrect
design

 Names must be meaningful in the context of the application
 If a state is not necessary, leave it out

 “Wait states” are often superfluous

 State names should be passive
 Adjectives are best, past participles are OK

SEI–16

Guarded transition checklist

 The entire range of truth values for a particular event is
covered

 Each guard is mutually exclusive of all other guards
 Guard variables are visible
 Guards with three or more variables are modeled with a

decision table
 The evaluation of a guard does not cause side effects

SEI–17

Well-Formed Subclass Behaviour Checklist

 Does not remove any superclass states
 All transitions accepted in the superclass are accepted in

the subclass

 Subclass does not weaken the state invariant of the
superclass

 Subclass may add an orthogonal state defined with respect to
its locally introduced instance variables

 All guards on superclass transitions are the same or weaker
for subclass transitions

SEI–18

Well-Formed Subclass Behaviour Checklist – 2

 All inherited actions are consistent with the subclass's
responsibilities
 Verify name-scope sensitive or dynamic binding of intraclass

messages is correct

 All inherited accessor events are appropriate in the context of the
subclass

 Messages sent to objects that are variables in a guard expression
do not have side effects on the class under test

SEI–19

Robustness checklist

 There is an explicit spec for an error-handling or exception-
handling mechanism for implicitly rejected events

 Illegal events do not corrupt the machine (preserve the last
good state, reset to a valid state, or self-destruct safely)

 Actions have no side effects on the resultant state
 Explicit exception, error logging, and recovery mechanisms

are specified for contract violations

SEI–20

Fault model for state machines

 Control faults: An incorrect sequence of events is accepted,
or an incorrect sequence of outputs is produced
 Missing transition

 Implementation does not respond to a valid event-state
pair

 Resultant state is incorrect but not corrupt

SEI–21

Missing transition

SEI–22

Fault model for state machines – 2

 Incorrect transition
 Implementation behaves as if an incorrect resultant

state has been reached
 Resultant state is incorrect but not corrupt

SEI–23

Incorrect transition

SEI–24

Fault model for state machines – 3

 Missing action
 Implementation does not produce any action for a

transition

SEI–25

Missing action

SEI–26

Fault model for state machines – 4

 Incorrect action
 Implementation produces the wrong action for a

transition

SEI–27

Incorrect action

SEI–28

Fault model for state machines – 5

 Sneak path
 Implementation accepts an event that is illegal or

unspecified for a state

SEI–29

Sneak path

SEI–30

Fault model for state machines – 6

 Corrupt state
 Implementation computes a state that is not valid
 Either the class invariant of state invariant is violated

SEI–31

Corrupt state

SEI–32

Fault model for state machines – 7

 Illegal message failure
 Implementation fails to handle and illegal message or

unspecified message correctly
 Incorrect output is produced, the state is corrupted, or

both

SEI–33

Sneak path to corrupt state

SEI–34

Fault model for state machines – 8

 Trap door – undefined message/events
 Implementation accepts an event that is not defined in

the specification
 Can result from

 Obsolete features that were not removed
 Inherited features that are inconsistent with the

requirements of the subclass
 "Undocumented" features added by the developer for

debugging purposes
 Sabotage for criminal or malicious purposes

SEI–35

Trap door

SEI–36

Incorrect Composite Behaviour

 Misuse of inheritance with modal classes can lead to state
control bugs
 Subclasses can conflict with sequential requirements for a

superclass
 Need to test beyond the scope of one class

SEI–37

Incorrect Composite Behaviour – 2

 Bugs occur for the following reasons
 Missing or incorrect redefinition of a method
 Subclass extension of the local state conflicts with a

superclass state
 Subclass fails to retarget a superclass transition

 Switches to an incorrect or undefined superclass state
 Order of evaluation of guards and preconditions is

incorrect or sensitive to the order of evaluation
 Guards behave as if an extra state exists

 Order of guard evaluation produces a side effect in the
subclass that is not present in the superclass

 Default name scope resolution results in guard parameters
being bound to the wrong subclass or superclass methods

