
State-Based Testing
Part B – Error Identification

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

SEI–2

Flattening the statechart

 Statecharts are great for communication, reducing clutter etc.
 They might hide subtle bugs

 e.g. entering a sub-state rather than a super-state

 We need to expand them to full transition diagrams for testing
purposes
 Expansion makes implicit transitions explicit, so they are

not lost
 Expansion is a flat view

 Includes everything from inheritance in OO and sub-
states in statecharts

 An automatable process

SEI–3

Concurrent statechart

SEI–4

Concurrency Hides Problems

 Concurrency hides implicit state combinations
 Hides potential serious defects
 Arise from implicit state combinations

 Explicit violations of implicit prohibitions should be tested

SEI–5

Expanding the Example

SEI–6

Unspecified Event/State Pairs

 State machine models will not include all events for all states
 Implicit transitions may be illegal, ignored, or a specification

omission
 Accepted illegal events lead to bugs called sneak paths
 For testing purposes, we cannot ignore implicit behaviour

 Develop a Response Matrix

SEI–7

Example statechart

SEI–8

Response
matrix

SEI–9

Possible responses to illegal events

SEI–10

Designing responses to illegal events

 Abstract state should not change
 Concrete state may change due to exception handling

 Illegal event design question
 Handle with defensive programming

 Defensive systems
 Handle with precondition contracts

 Cooperative systems

SEI–11

Designing responses to illegal events – 2

 Possible responses
 Raise exception
 Treat message as a noop
 Attempt error recovery
 Invoke abnormal termination

 Tester needs to decide expected responses so actual
responses can be evaluated

SEI–12

State model validation

 A state model must be complete, consistent, and correct
before it is used to generate test cases

 We will look at four validation checklists
 Structure checklist
 State name checklist
 Guarded transition checklist
 Well-formed subclass behaviour checklist
 Robustness checklist

SEI–13

Structure checklist

 There is an initial state with only outbound transitions
 There is a final state with only inbound transitions (if not,

explicit reason is needed)
 No equivalent states
 Every state is reachable from the initial state
 The final state is reachable from all states
 Every defined event and every defined action appears in at

least one transition

SEI–14

Structure checklist

 Except for the initial and final states, every state has at least
one incoming and one outgoing transition

 The events accepted in a particular state are unique or
differentiated by mutually exclusive guards

 Complete specification: For every state, every event is
accepted or rejected (either explicitly or implicitly)

SEI–15

State name checklist

 Poor names are often indications of incomplete or incorrect
design

 Names must be meaningful in the context of the application
 If a state is not necessary, leave it out

 “Wait states” are often superfluous

 State names should be passive
 Adjectives are best, past participles are OK

SEI–16

Guarded transition checklist

 The entire range of truth values for a particular event is
covered

 Each guard is mutually exclusive of all other guards
 Guard variables are visible
 Guards with three or more variables are modeled with a

decision table
 The evaluation of a guard does not cause side effects

SEI–17

Well-Formed Subclass Behaviour Checklist

 Does not remove any superclass states
 All transitions accepted in the superclass are accepted in

the subclass

 Subclass does not weaken the state invariant of the
superclass

 Subclass may add an orthogonal state defined with respect to
its locally introduced instance variables

 All guards on superclass transitions are the same or weaker
for subclass transitions

SEI–18

Well-Formed Subclass Behaviour Checklist – 2

 All inherited actions are consistent with the subclass's
responsibilities
 Verify name-scope sensitive or dynamic binding of intraclass

messages is correct

 All inherited accessor events are appropriate in the context of the
subclass

 Messages sent to objects that are variables in a guard expression
do not have side effects on the class under test

SEI–19

Robustness checklist

 There is an explicit spec for an error-handling or exception-
handling mechanism for implicitly rejected events

 Illegal events do not corrupt the machine (preserve the last
good state, reset to a valid state, or self-destruct safely)

 Actions have no side effects on the resultant state
 Explicit exception, error logging, and recovery mechanisms

are specified for contract violations

SEI–20

Fault model for state machines

 Control faults: An incorrect sequence of events is accepted,
or an incorrect sequence of outputs is produced
 Missing transition

 Implementation does not respond to a valid event-state
pair

 Resultant state is incorrect but not corrupt

SEI–21

Missing transition

SEI–22

Fault model for state machines – 2

 Incorrect transition
 Implementation behaves as if an incorrect resultant

state has been reached
 Resultant state is incorrect but not corrupt

SEI–23

Incorrect transition

SEI–24

Fault model for state machines – 3

 Missing action
 Implementation does not produce any action for a

transition

SEI–25

Missing action

SEI–26

Fault model for state machines – 4

 Incorrect action
 Implementation produces the wrong action for a

transition

SEI–27

Incorrect action

SEI–28

Fault model for state machines – 5

 Sneak path
 Implementation accepts an event that is illegal or

unspecified for a state

SEI–29

Sneak path

SEI–30

Fault model for state machines – 6

 Corrupt state
 Implementation computes a state that is not valid
 Either the class invariant of state invariant is violated

SEI–31

Corrupt state

SEI–32

Fault model for state machines – 7

 Illegal message failure
 Implementation fails to handle and illegal message or

unspecified message correctly
 Incorrect output is produced, the state is corrupted, or

both

SEI–33

Sneak path to corrupt state

SEI–34

Fault model for state machines – 8

 Trap door – undefined message/events
 Implementation accepts an event that is not defined in

the specification
 Can result from

 Obsolete features that were not removed
 Inherited features that are inconsistent with the

requirements of the subclass
 "Undocumented" features added by the developer for

debugging purposes
 Sabotage for criminal or malicious purposes

SEI–35

Trap door

SEI–36

Incorrect Composite Behaviour

 Misuse of inheritance with modal classes can lead to state
control bugs
 Subclasses can conflict with sequential requirements for a

superclass
 Need to test beyond the scope of one class

SEI–37

Incorrect Composite Behaviour – 2

 Bugs occur for the following reasons
 Missing or incorrect redefinition of a method
 Subclass extension of the local state conflicts with a

superclass state
 Subclass fails to retarget a superclass transition

 Switches to an incorrect or undefined superclass state
 Order of evaluation of guards and preconditions is

incorrect or sensitive to the order of evaluation
 Guards behave as if an extra state exists

 Order of guard evaluation produces a side effect in the
subclass that is not present in the superclass

 Default name scope resolution results in guard parameters
being bound to the wrong subclass or superclass methods

