
State-Based Testing
Part A – Modeling states

Generating test cases for complex behaviour

Reference: Robert V. Binder
Testing Object-Oriented Systems: Models, Patterns, and Tools
Addison-Wesley, 2000, Chapter 7

SM–2

Motivation

 We are interested in testing the behaviour of many different
types of systems, including event-driven software systems

 Interaction with GUI systems can follow a large number of
paths

 State machines can model event-driven behaviour
 If we can express the system under test as a state machine,

we can generate test cases for its behaviour

SM–3

OO Systems

 State-based testing is well suited to OO Systems
 Behaviour responsibility is distributed over

 Classes, clusters, subsystem or system
 Behaviour bugs due to complex and implicit structure

SM–4

Question 1

 What is a state machine?

SM–5

A state machine is …

 A system whose output is determined by both current state
and past input

 Previous inputs are represented in the current state
 State-based behaviour

 Identical inputs are not always accepted
 Depends upon the state

 When accepted, they may produce different outputs
 Depends upon the state

SM–6

Building blocks of a state machine

 State
 An abstraction that summarizes past inputs, and

determines behaviour on subsequent inputs

 Transition
 An allowable two-state sequence. Caused by an event

 Event
 An input or a time interval

 Action
 The output that follows an event

SM–7

State machine behaviour

1. Begin in the initial state
2. Wait for an event
3. An event comes in

1. If not accepted in the current state, ignore
2. If accepted, a transition fires, output is produced (if any),

the resultant state of the transition becomes the current
state

4. Repeat from step 2 unless the current state is the final
state

SM–8

State machine properties

 How events are generated is not part of the model
 Transitions fire one at a time
 The machine can be in only one state at a time
 The current state cannot change except by a defined

transition
 States, events, transitions, actions cannot be added during

execution

SM–9

State machine properties

 Algorithms for output creation are not part of the model
 The firing of a transition does not consume any amount of

time
 An event with no beginning or ending, which implies

duration

The challenge
How to model the behaviour of a given
system using a state machine?

SM–10

Question 2

 What is a state transition diagram?

SM–11

State transition diagrams

SM–12

Incomplete Specifications

 Complete specifications
 A transition for every event-state pair

 Incomplete specifications
 The norm for modelling

 For design too cumbersome to completely specify, as
only a small subset is of interest

 Cannot ignore unspecified event-state pairs for testing

SM–13

Equivalent states

 Any two states are equivalent
 If all possible event sequences applied to these states

result in identical behaviour
 By looking at the output cannot determine from which state

machine was started
 Can extend to any pair of states

 Minimal machine has no equivalent states
 A model with equivalent states is redundant

 Probably incorrect
 Probably incomplete

SM–14

Reachability

 State Sf is reachable from state St
 If there is a legal event sequence that moves the machine

from Sf to St
 Just stating a state is reachable implies reachable from the

initial state

 Problems
 Dead state

 Cannot leave – cannot reach a final state
 Dead loop

 Cannot leave – cannot reach a final state
 Magic state

 Cannot enter – no input transitions
 Can go to other states – extra initial state

SM–15

Guarded transitions

 The previous model is ambiguous, e.g. there are two possible
reactions to push and pop in the Loaded state

 Guards can be added to transitions
 A guard is a predicate associated with the event
 A guarded transition cannot fire unless the guard predicate

evaluates to true

SM–16

Guarded transitions

SM–17

Limitations of the basic model

 Limited scalability
 Even with the best tools available, diagrams with 20 states

or more are unreadable

 Concurrency cannot be modeled
 Different processes can be modeled with different state

machines, but the interactions between them cannot

 Not specific enough for Object-Oriented systems

SM–18

Statechart – Scalability – traffic light example

SM–19

Traffic light with superstates – all states view

Superstates

Common to
all inner states

Initial state

SM–20

Traffic light – top level view

SM–21

Traffic light – level 1 view

SM–22

Traffic light – level 2 view

SM–23

Statechart advantages

 Easier to read
 Suited for object oriented systems (UML uses statecharts)
 Hierarchical structure helps with state explosion
 They can be used to model concurrent processes as well

SM–24

Concurrent statechart

SM–25

State model

 Must support automatic test generation
 The following criteria must be met

 Complete and accurate reflection of the implementation to
be tested

 Allows for abstraction of detail
 Preserves detail that is essential for revealing faults
 Represents all events and actions
 Defines state so that the checking of resultant state can be

automated

SM–26

What is a state?

 We need an executable definition that can be evaluated
automatically

 An object with two Boolean fields has 4 possible states?
 This would lead to trillions of states for typical classes

 Instead, state is
 A set of variable value combinations that share some

property of interest

 Can be coded as a Boolean expression

SM–27

An example

 Consider the following class

 A primitive view of the state space would yield too many
states
 The cross-product of all values

 What abstraction gives fewer states?
 How is the abstraction represented?

Class Account {
 AccountNumber number;
 Money balance;
 Date lastUpdate;
 …
}

SM–28

Trillions of states

SM–29

Three abstract states

Shaded volumes

SM–30

State invariants

 A valid state can be expressed with a state invariant
 a Boolean expression that can be checked

 A state invariant defines a subset of the values allowed by the
class invariant
 ensure a or b

in Eiffel this defines two states are possible

SM–31

Transitions

 A transition is a unique combination of
 Two state invariants

 One for the accepting
 One for the resultant state
 Both may be the same

 An associated event
 An optional guard expression
 An optional action or actions

SM–32

Transition components

 An Event
 A message sent to the class under test
 A response received from a supplier of the class under test
 An interrupt or similar external control action that must be

accepted

 A guard
 Predicate associated with an event
 No side effects

 An action
 The side effects that occur

SM–33

Alpha and Omega states

 The initial state of an object is the state right after it is
constructed

 However, a class may have multiple constructors that
leave the object in different states

 To avoid modeling problems we define that an object is in
the α state just before construction

 α transitions go from α state to a constructor state

 Similarly with ω and destruction (not necessary to model
ω for languages that have garbage collection)

 ω transitions go from a destructor state to the ω state

