
Dataflow Testing

Chapter 10

DFT–2

Dataflow Testing

 Testing All-Nodes and All-Edges in a control flow graph
may miss significant test cases

 Testing All-Paths in a control flow graph is often too time-
consuming

 Can we select a subset of these paths that will reveal the
most faults?

 Dataflow Testing focuses on the points at which variables
receive values and the points at which these values are
used

DFT–3

Concordances

 Data flow analysis is in part based concordance analysis
such as that shown below – the result is a variable cross-
reference table

 18 beta ← 2
 25 alpha ← 3 × gamma + 1
 51 gamma ← gamma + alpha - beta
123 beta ← beta + 2 × alpha
124 beta ← gamma + beta + 1

 Assigned Used
alpha 25 51, 123
beta 18, 123, 124 51, 123, 124
gamma 51 25, 51, 124

DFT–4

Dataflow Analysis

 Can reveal interesting bugs
 A variable that is defined but never used
 A variable that is used but never defined
 A variable that is defined twice before it is used
 Sending a modifier message to an object more than once

between accesses
 Deallocating a variable before it used

 Container problem – deallocating container looses
references to items in the container, memory leak

 These bugs can be found from a cross-reference table
using static analysis

 Paths from the definition of a variable to its use are more
likely to contain bugs

DFT–5

Definitions

 A node n in the program graph is a defining node for
variable v – DEF(v, n) – if the value of v is defined at the
statement fragment in that node
 Input, assignment, procedure calls

 A node in the program graph is a usage node for variable
v – USE(v, n) – if the value of v is used at the statement
fragment in that node
 Output, assignment, conditionals

 In languages without garbage collection
 A node in the program grade is a kill node for a variable v

– KILL(v, n) – if the variable is deallocated at the statement
fragment in that node.

DFT–6

Definitions – 2

 A usage node is a predicate use, P-use, if variable v
appears in a predicate expression
 Always in nodes with outdegree ≥ 2

 A usage node is a computation use, C-use, if variable v
appears in a computation
 Always in nodes with outdegree ≤ 1

 A definition-use path, du-path, with respect to a variable
v is a path whose first node is a defining node for v, and
its last node is a usage node for v

 A du-path with no other defining node for v is a definition-
clear path, dc-path

DFT–7

1 int max = 0;
2 int j = s.nextInt();
3 while (j > 0)
4 if (j > max) {
5 max = j;
6 }
7 j = s.nextInt();
8 }
9 System.out.println(max);

Example 1 – program

A definition of j

A C-use of j

P-uses of j & max

A definition of j

Definitions
of max

A C-use of max

DFT–8

Example 1 – analysis

Legend
A..F Segment name
d defining node for j
u use node for j

int max = 0;
int j = s.nextInt();

while (j > 0)

System.out.println(max);

max = j;

if (j > max)

j = s.nextInt();

A

B

C

D

E

F

d

d

u

u

u

dc-paths j
A B
A B C
A B C D
E B
E B C
E B C D

dc-paths max
A B F
A B C
D E B C
D E B F

DFT–9

Dataflow Coverage Metrics

 Based on these definitions we can define a set of
coverage metrics for a set of test cases

 We have already seen
 All-Nodes
 All-Edges
 All-Paths

 Data flow has additional test metrics for a set T of paths in
a program graph
 All assume that all paths in T are feasible

DFT–10

All-Defs Criterion

 The test set T satisfies the All-Def criterion iff for every
variable v in the program P, T contains a dc-path from
every defining node of v to a use of v
 For every variable, T contains dc-paths from every defining

node to at least one use node
 Not all use nodes need to be reached

!

"v # P(V),nd # dd _ graph(P) |DEF(v,nd)

•$nu# dd _ graph(P) |USE(v,nu)• dc _ path(nd,nu)# T

DFT–11

All-Uses Criterion

 The test set T satisfies the All-Uses criterion iff for every
variable v in the program P, T contains a dc-path from
every defining node of v to every use of v
 For every variable, T contains dc-paths that start at every

definition node, and terminate at every use node for the
variable

 Not DEF(v,n)×USE(v,n) – not possible to have a dc-
path from every definition node to every use node

!

("v # P(V),nu# dd _ graph(P) |USE(v,nu)

•$nd # dd _ graph(P) |DEF(v,nd)• dc _ path(nd,nu)# T)

%

all_ defs_criterion

DFT–12

All-P-uses / Some-C-uses

 The test set T satisfies the All-P-uses/Some-C-uses
criterion iff for every variable v in the program P, T
contains a dc-path from every defining node of v to every
P-use of v; if a definition of v has no P-uses, a dc-path
leads to at least C-use

!

("v # P(V),nu# dd _ graph(P) |P _ use(v,nu)

•$nd # dd _ graph(P) |DEF(v,nd)• dc _ path(nd,nu)# T)

%

all_ defs_criterion

DFT–13

All-C-uses / Some-P-uses

 The test set T satisfies the All-C-uses/Some-P-uses
criterion iff for every variable v in the program P, T
contains a dc-path from every defining node of v to every
C-use of v; if a definition of v has no C-uses, a dc-path
leads to at least P-use

!

("v # P(V),nu# dd _ graph(P) |C _ use(v,nu)

•$nd # dd _ graph(P) |DEF(v,nd)• dc _ path(nd,nu)# T)

%

all_ defs_criterion

DFT–14

Examine Dataflow

 For each variable the the example see what the following
sub-flows provide
 All-Defs (AD)
 All-C-uses (ACU)
 All-P-uses (APU)
 All-C-uses/Some-P-uses (ACU+P)
 All-P-uses/Some-C-uses (APU+C)
 All-uses

DFT–15

Mile-per-gallon Program

gasguzzler (miles, gallons, price : INTEGER)

if gallons = 0 then

 // Watch for division by zero!!
 Print(“You have “ + gallons + “gallons of gas”)

else if miles/gallons > 25

 then print(“Excellent car. Your mpg is “
 + miles/gallon)

 else print(“You must be going broke. Your mpg is “
 + miles/gallon + “ cost “ + gallons * price)

fi
end

DFT–16

Mile-per-gallon Program – Segmented

gasguzzler (miles, gallons, price : INTEGER) A
if gallons = 0 then B
 // Watch for division by zero!! C
 Print(“You have “ + gallons + “gallons of gas”)
else if miles/gallons > 25 D
 then print(“Excellent car. Your mpg is “ E
 + miles/gallon)
 else print(“You must be going broke. Your mpg is “ F
 + miles/gallon + “ cost “ + gallons * price)
fi G
end

DFT–17

MPG Control flow graph

Def miles
gallons

P-use
gallons

P-use, C-use
 miles
gallons

C-use gallons

C-use miles, gallons, price

C-use miles, gallons

DFT–18

MPG – DU-Paths for Miles

 All-Defs
 Each definition of each variable for at least one use of the

definition
 A B D

 All-C-uses
 At least one path of each variable to each c-use of the

definition
 A B D E A B D F A B D

 All-P-uses
 At least one path of each variable definition to each p-use of

the definition
 A B D

DFT–19

MPG – DU-Paths for Miles – 2

 All-C-uses/Some-P-uses
 At least one path of each variable definition to each c-use of

the variable. If any variable definitions are not covered use
p-use

 A B D E A B D F A B D

 All-P-uses/Some-C-uses
 At least one path of each variable definition to each p-use of

the variable. If any variable definitions are not covered use
c-use

 A B D

 All-uses
 At least one path of each variable definition to each p-use

and each c-use of the definition
 A B D A B D E A B D F

DFT–20

MPG – DU-Paths for Gallons

 All-Defs
 Each definition of each variable for at least one use of the

definition
 A B

 All-C-uses
 At least one path of each variable to each c-use of the

definition
 A B C A B D E A B D F A B D

 All-P-uses
 At least one path of each variable definition to each p-use of

the definition
 A B A B D

DFT–21

MPG – DU-Paths for Gallons – 2

 All-C-uses/Some-P-uses
 At least one path of each variable definition to each c-use of

the variable. If any variable definitions are not covered use
p-use

 A B C A B D E A B D F A B D

 All-P-uses/Some-C-uses
 At least one path of each variable definition to each p-use of

the variable. If any variable definitions are not covered use
c-use

 A B A B D

 All-uses
 At least one path of each variable definition to each p-use

and each c-use of the definition
 A B A B C A B D A B D E A B D F

DFT–22

MPG – DU-Paths for Price

 All-Defs
 Each definition of each variable for at least one use of the

definition
 A B D F

 All-C-uses
 At least one path of each variable to each c-use of the

definition
 A B D F

 All-P-uses
 At least one path of each variable definition to each p-use of

the definition
 none

DFT–23

MPG – DU-Paths for Price – 2

 All-C-uses/Some-P-uses
 At least one path of each variable definition to each c-use of

the variable. If any variable definitions are not covered use
p-use

 A B D F

 All-P-uses/Some-C-uses
 At least one path of each variable definition to each p-use of

the variable. If any variable definitions are not covered use
c-use

 A B D F

 All-uses
 At least one path of each variable definition to each p-use

and each c-use of the definition
 A B D F

DFT–24

Rapps-Weyuker data flow hierarchy

All-Paths

All-DU-Paths

All-Uses

All-C-uses
Some-P-uses

All-Defs All-P-uses

All-Edges

All-Nodes

All-P-uses
Some-C-uses

DFT–25

Potential Anomalies

Serious defectkill-useku
Potential bugfirst kill~ k
Alloweduse-killuk
Allowed - redefineduse-defineud
Potential bugfirst use~ u
Potential bugdefine-killdk
Allowed - normal casedefine-usedu
Allowedfirst define~ d
ExplanationAnomalies

Data flow node combinations for a variable

DFT–26

Potential Anomalies – 2

Allowed - normal casekill lastk ~
Alloweduse lastu ~
Potential bugdefine lastd ~
Potential bugkil-killkk
Allowed - normal caseuse-useuu
Potential bugdefine-definedd
Allowed - redefinedkill-definekd
ExplanationAnomalies

DFT–27

Data flow guidelines

 Data flow testing is good for computationally/control
intensive programs
 If P-use of variables are computed, then P-use data flow

testing is good

 Define/use testing provides a rigorous, systematic way to
examine points at which faults may occur.

 Aliasing of variables causes serious problems!
 Working things out by hand for anything but small

methods is hopeless
 Compiler-based tools help in determining coverage values

DFT–28

Program slice

 Analyze program by focusing on parts of interest,
disregarding uninteresting parts.
 The point of slices is to separate a program into components

that have a useful functional meaning
 Ignore those parts that do not contribute to the functional

meaning of interest
 Cannot do this with du-paths, as slices are not simply

sequences of statements or statement fragments

 Informally
 A program slice is a set of program statements that

contributes to or affects a value of a variable at some point
in a program

DFT–29

Program slice – 2

 Formally
 Given a program P and a set of variables V in P, a slice on the

variable V at statement n, S(V,n), is the set of all statements and
statement fragments in P prior to the node n that contribute to the
values of variables in V at node n.

 Usually statements and fragments correspond to
numbered nodes in a program graph, so S(V,n) is a set of
node numbers.

 "Prior to" is a dynamic execution time notion
 Inclusion of node n

 Include n if a variable in v is defined at n
 Do not include n if no variable is defined at n; i.e. all

variables are used at n

DFT–30

Program slide – meaning of "contributes to"

 Refine use set for a variable
 P-use – used in a decision predicate
 C-use – used in a computation
 O-use – used for output
 L-use – used for location (pointers, subscripts)
 I-use – used for iteration (loop counters, loop indices)
 I-def – defined by input
 A-def – defined by assignment

 Textbook excludes all non-executable statements such as
variable declarations

DFT–31

Program slide – meaning of "contributes to" – 2

 What to include in S(V,n)? Consider a single variable v
 Include all I-def, A-def
 Include any C-use, P-use of v, if excluding it would change

the value of v
 Include any P-use or C-use of another variable, if excluding

it would change the value of v
 L-use and I-use

 Inclusion is a judgment call, as such use does cause
problems

 Exclude all non-executable nodes such as variable
declarations – if a slice is not to be compliable

 Exclude O-use, as does not change the value of v

DFT–32

Example 1 – some slices

 This not an exciting program wrt to slices
 S (max , 9) = { 1, 4, 5, 9 }
 S (max , 9) = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
 S (max , 5) = { 1, 4, 5, 6, 8 }
 S (max , 5) = { 1, 2, 3, 4, 5, 6, 7, 8 }
 S (j , 7) = { 2, 3, 4, 5 6, 7, 8 }
 S (j , 5) = {1, 2, 3, 4, 5, 6, 7, 8}

DFT–33

Slice style & technique

 Do not make a slice S(V,n) where the variables of interest
are not in node n
 Leads to slices that are too big

 Make slices on one variable
 Sometimes slices with more variables are trivial super sets

of a one variable case, then a slice on many variables is
useful, as we use it and not the one variable slice

 Make slices for all A-def nodes
 Make slices for all P-def nodes – very useful in decision

intensive programs

DFT–34

Slice style & technique – 2

 Avoid slices on C-use, they tend to be redundant
 Avoid slices on O-use, they are the union of A-def and I-

def slices
 Try to make slices compliable

 Means including declarations and compiler directives
 Each such slice becomes executable and more easily tested

 Relative complement of slices can have diagnostic value
 If you have difficulty at a part, divide the program into two

parts
 If the error does not lie in one part, then it must be in the

relative complement

DFT–35

Slice style & technique – 3

 Slices and DD-paths have a many-to-many relationship
 Nodes in one slice may be in many DD-paths, and nodes in

one DD-path may be in many slices
 Sometimes well-chosen relative complement slices can be

identical to DD-paths

 Developing a lattice of slices can improve insight in
potential trouble spots

 Slices contain define/reference information
 When slices are equal, the corresponding paths are

definition clear

DFT–36

Slices and programming practice

 Slice testing is an example where consideration of testing
can lead to better program development
 Build and test a program in slices
 Merge/splice slices into larger programs
 Use slice composition to re-develop difficult sections of

program text

DFT–37

Billing example

calculateBill (usage : INTEGER) : INTEGER
double bill = 0;

if usage > 0 then bill = 40 fi
if usage > 100
then if usage ≤ 200

then bill = bill + (usage – 100) *0.5
else bill = bill + 50 + (usage – 200) * 0.1
 if bill ≥ 100 then bill = bill * 0.9 fi

 fi
fi
return bill
end

