Path Testing – Generating Test Cases

Chapter 9

What is the control graph – DD-path graph for the following?

```
if a < b then c = a+b; d = a*b
    else c = a*b; d = a+b
if c < d then x = a+c; y = b+d
    else x = a*c; y = b*d</pre>
```

Generating Test Cases

- The key question is how to make the path execute, if possible.
 - Generate input data that satisfy all the conditions on the path.
- Key concepts in generating test cases
 - Input vector
 - Predicate
 - Path condition
 - Predicate interpretation
 - Path predicate expression
 - Generating test input from path predicate expression

Input Vector

- An input vector is a collection of all data entities read by the routine whose values must be fixed prior to entering the routine.
- Members of an input vector can be as follows.
 - Input arguments to the routine
 - Global variables and constants
 - Files
 - Contents of registers (in Assembly language programming)
 - Network connections
 - Timers

Predicate

- Predicate
 - A predicate is a logical function evaluated at a decision point.
 - Example
 - In the following a < b and c < d are predicates</p>

Path Predicate

- Path predicate
 - A path predicate is the set of predicates associated with a path.
 - Example
 - In the following a < b = true and c < d = false is a path predicate for path A 1 B 4

if a < b then c = a+b ; d = a*b
 else c = a*b ; d = a+b
if c < d then x = a+c ; y = b+d
 else x = a*c ; y = b*d</pre>

Predicate Interpretation

- A path predicate may contain local variables.
- Local variables play no role in selecting inputs that force a path to execute.
- Local variables can be eliminated by a process called symbolic execution.
 - Symbolically substituting operations along a path in order to express the predicate solely in terms of the input vector and a constant vector.
- A predicate may have different interpretations depending on how control reaches the predicate.

Path Predicate Expression

- An interpreted path predicate is called a path predicate expression.
- A path predicate expression has the following attributes.
 - It is void of local variables.
 - It is a set of constraints in terms of the input vector, and, maybe, constants.
 - Path forcing inputs can be generated by solving the constraints.
 - If a path predicate expression has no solution, the path is infeasible.

Path Predicate Generating Input Values

- Path predicate: a < b = true & c < d = false</p>
- Substitute for c and d:

 a < b = true & a + b < a * b = false
 --> a < b & a + b ≥ a * b
- Solve for a and b: a = 0 & b = 1
 Solutions are not unique
- We have feasible path, since a solution exists.
- Can have infeasible paths, if there is no solution to the constraints

	A1B3	A1B4	A2B3	A2B4
A < B	Т	Т	F	F
C < D	Т	F	Т	F
A value	2	0	1	5
B value	5	1	0	2

Paths **A1B3** and **A2B4** give statement coverage Or paths **A1B4** and **A2B3** give statement coverage

Selecting paths

- A program unit may contain a large number of paths.
 - Path selection becomes a problem. Some selected paths may be infeasible.
 - Apply a path selection strategy:
 - Select as many short paths as possible.
 - Choose longer paths.
 - Make an effort to write code with fewer/no infeasible paths.