
Path Testing and Test Coverage

Chapter 9



PT–2

Structural Testing

 Also known as glass/white/open box testing

 Structural testing is based on using specific knowledge of
the program source text to define test cases
 Contrast with functional testing where the program text is

not seen but only hypothesized



PT–3

Structural Testing

 Structural testing methods are amenable to
 Rigorous definitions

 Control flow, data flow, coverage criteria

 Mathematical analysis
 Graphs, path analysis

 Precise measurement
 Metrics, coverage analysis



PT–4

Program Graph - Definition

 Given a program written in an imperative programming
language, its program graph is a directed graph in
which nodes are statements and statement fragments,
and edges represent flow of control



PT–5

Triangle program text

1   output ("Enter 3 integers")
2   input (a, b, c)
3   output("Side a,b c: ", a, b, c)
4   if (a < b) and (b < a+c) and (c < a+b)
5   then isTriangle ← true
6   else isTriangle ← false
7   fi
8   if isTriangle
9   then if (a = b) and (b = c)
10        else output ("equilateral")
11        else if (a ≠ b ) and ( a ≠ c ) and ( b ≠ c)
12               then output ("scalene")
13               else output("isosceles")
14               fi
15       fi
16   else output ("not a triangle")
17   fi



PT–6

Program Graph - Example



PT–7

DD-Path – informal definition

 A decision-to-decision path (DD-Path) is a path chain
in a program graph such that
 Initial and terminal nodes are distinct

 Every interior node has indeg =1 and outdeg = 1
 The initial node is 2-connected to every other node in

the path
 No instances of 1- or 3-connected nodes occur



PT–8

Connectedness definition

 Two nodes n1 and n2 in a directed graph are
 0-connected iff no path exists between them

 1-connected iff a semi-path but no path exists between
them



PT–9

Connectedness definition – 2

 Two nodes n1 and n2 in a directed graph are

 2-connected iff a path exists between between them

 3-connected iff a path goes from n1 to n2 , and a path goes
from n2 to n1



PT–10

DD-Path – formal definition

 A decision-to-decision path (DD-Path) is a chain in a
program graph such that:
 Case 1: consists of a single node with indeg=0

 Case 2: consists of a single node with outdeg=0

 Case 3: consists of a single node with
 indeg ≥ 2 or outdeg  ≥ 2

 Case 4: consists of a single node with
indeg =1, and outdeg = 1

 Case 5: it is a maximal chain of length  ≥ 1

 DD-Paths are also known as segments



PT–11

Triangle program DD-paths

3G9

3F8

3E7

4D6

4C5

3B4

5A2,3

1First1

CasePathNodes

2Last17

4N16

3M15

3L14

4K13

4J12

3I11

4H10

CasePathNodes



PT–12

DD-Path Graph – informal definition

 Given a program written in an imperative language, its
DD-Path graph is a directed graph, in which
 nodes are DD-Paths of its program graph

 edges represent control flow between successor DD-Paths.

 Also known as Control Flow Graph



PT–13

Control Flow Graph Derivation

 Straightforward process

 Some judgment is required

 The last statement in a segment must be a predicate, a
loop control, a break, or a method exit



PT–14

Triangle program DD-path graph



PT–15

Java example program

public int displayLastMsg(int nToPrint) {
  np = 0;
  if ((msgCounter > 0) && (nToPrint > 0)) {
    for (int j = lastMsg; (( j != 0) && (np < nToPrint)); --j) {
      System.out.println(messageBuffer[j]);
      ++np;
    }
    if (np < nToPrint) {
      for (int j = SIZE; ((j != 0) && (np < nToPrint)); --j) {
        System.out.println(messageBuffer[j]);
        ++np;
      }
    }
  }
  return np;
}



PT–16

Java example program – Segments part 1

F    }11

F    ++np;10

F  { System.out.println(messageBuffer[j]);9

F      --j)8

E       && (np < nToPrint));7

D      (   ( j != 0)6

C{ for (int j = lastMsg;5

B   && (nToPrint > 0))4

Aif (   (msgCounter > 0)3

Anp = 0;2

public int displayLastMsg(int nToPrint) {1

Line Segment



PT–17

Java example program – Segments part 2

Line Segment

L}23

L  return np;22

L  }21

L    }20

L      }19

K     ++np;18

K      { System.out.println(messageBuffer[j]);17

K      --j)16

J      (np < nToPrint));15

I      ((j != 0) &&14

H      { for (int j = SIZE;13

G    if (np < nToPrint)12



PT–18

Java example program displayLastMsg – DD-path graph



PT–19

DD graphs definition – 1

 Depict which program segments may be followed by
others

 A segment is a node in the CFG

 A conditional transfer of control is a branch represented
by an edge

 An entry node (no inbound edges) represents the entry
point to a method

 An exit node (no outbound edges) represents an exit
point of a method



PT–20

DD graphs definition – 2

 An entry-exit path is a path from the entry node to the
exit node

 Path expressions represent paths as sequences of
nodes

 Loops are represented as segments within parentheses
followed by an asterisk

 There are 22 different path expressions in our example



PT–21

Path expressions – part 1

A B C D E G H I L11

A B C (D E F)* D E G H (I J K)* I J L10

A B C D G H (I J K)* I L9

A B C D G H I J L8

A B C D G H I L7

A B C (D E F)* D E G L6

A B C (D E F)* D G L5

A B C D E G L4

A B C D G L3

A B L2

A L1

Entry-Exit path



PT–22

Path expressions – part 2

A B C (D E F)* D E G H (I J K)* I J L22

A B C (D E F)* D E G H (I J K)* I L21

A B C (D E F)* D E G H I J L20

A B C (D E F)* D E G H I L19

A B C (D E F)* D G H (I J K)* I J L18

A B C (D E F)* D G H (I J K)* I L17

A B C (D E F)* D G H I J L16

A B C (D E F)* D G H I L15

A B C D E G H (I J K)* I J L14

A B C D E G H (I J K)* I L13

A B C D E G H I J L12

Entry-Exit path



PT–23

Paths displayLastMsg – decision table – part 1

JIGEDBAEntry/Exit Path

–FTFTTTA B C D E G H I L11

TT/FT/T–FTTA B C D G H (I J K)* I J L10

TT/–T/F–FTTA B C D G H (I J K)* I L9

FTT–FTTA B C D G H I J L8

–FT–FTTA B C D G H I L7

––FT/FT/TTTA B C (D E F)* D E G L6

––FT/–T/FTTA B C (D E F)* D G L5

–––FTTTA B C D E G L4

––F–FTTA B C D G L3

–––––FTA B L2

––––––FA L1

Path condition by Segment Name

x/x Conditions at loop entry and exit



PT–24

Branch coverage – decision table example – part 2

JIGEDBAEntry/Exit Path

TTTT/FT/TTTA B C (D E F)* D E G H (I J K)* I J L22

TTTT/FT/TTTA B C (D E F)* D E G H (I J K)* I L21

FTTT/FT/TTTA B C (D E F)* D E G H I J L20

–FTT/FT/TTTA B C (D E F)* D E G H I L19

T/FT/TTT/–T/FTTA B C (D E F)* D G H (I J K)* I J L18

T/–T/FTT/–T/FTTA B C (D E F)* D G H (I J K)* I L17

FTTT/FT/TTTA B C (D E F)* D G H I J L16

–FTT/–T/FTTA B C (D E F)* D G H I L15

T/FT/TTFTTTA B C D E G H (I J K)* I J L14

T/–T/FTFTTTA B C D E G H (I J K)* I L13

FTTFTTTA B C D E G H I J L12

Path condition by Segment Name

x/x Conditions at loop entry and exit



PT–25

Program text coverage Metrics

 C0     Every Statement

 C1     Every DD-path

 C1p     Every predicate to each outcome

 C2     C1 coverage + loop coverage

 Cd     C1 coverage + every dependent pair of DD-paths

 CMCC   Multiple condition coverage

 Cik     Every program path that contains k loop repetitions

 Cstat    Statistically significant faction of the paths

 C∞     Every executable path



PT–26

Program text coverage models

 Statement Coverage

 Segment Coverage

 Branch Coverage

 Multiple-Condition Coverage



PT–27

Statement coverage – C0

 Achieved when all statements in a method have been
executed at least once

 A test case that will follow the path expression below will
achieve statement coverage in our example

 One test case is enough to achieve statement coverage!

A B C (D E F)* D G H (I J K)* I L



PT–28

Segment coverage

 Segment coverage counts segments rather than statements

 May produce drastically different numbers
 Assume two segments P and Q
 P has one statement, Q has nine
 Exercising only one of the segments will give 10% or 90%

statement coverage
 Segment coverage will be 50% in both cases



PT–29

Statement coverage problems

 Predicate may be tested for only one value (misses many
bugs)

 Loop bodies may only be iterated once

 Statement coverage can be achieved without branch
coverage. Important cases may be missed

String s = null;
if (x != y) s = “Hi”;
String s2 = s.substring(1);



PT–30

Branch coverage – C1p

 Achieved when every path from a node is executed at
least once

 At least one true and one false evaluation for each
predicate

 Can be achieved with D+1 paths in a control flow graph
with D 2-way branching nodes and no loops
 Even less if there are loops

 In the Java example displayLastMsg branch coverage is
achieved with three paths – see next few slides

X L
X C (Y F)* Y G L
X C (Y F)* Y G H (Z K)* Z L



PT–31

Java example program displayLastMsg – DD-path graph

X, Y & Z are shorthand for the nodes
within the dotted boxes; used for branch testing



PT–32

Java example program displastLastMsg
– aggregate predicate DD-path graph



PT–33

Paths aggregate – decision table – part 1

JIGEDBABranch Coverage

–FTFTTTX C Y G H Z L11

TT/FT/T–FTTX C Y G H (Z K)* I L10

TT/–T/F–FTTX C Y G H (Z K)* I L9

FTT–FTTX C Y G H Z L8

–FT–FTTX C Y G H Z L7

––FT/FT/TTTX C (Y F)* Y G L6

––FT/–T/FTTX C (Y F)* Y G L5

–––FTTTX C Y G L4

––F–FTTX C Y G L3

–––––FTX L2

––––––FX L1

Path condition by Segment Name

x/x Conditions at loop entry and exit



PT–34

Branch coverage – decision table example – part 2

JIGEDBABranch Coverage

TTTT/FT/TTTX C (Y F)* Y G H (Z K)* Z L22

TTTT/FT/TTTX C (Y F)* Y G H (Z K)* Z L21

FTTT/FT/TTTX C (Y F)* Y G H Z L20

–FTT/FT/TTTX C (Y F)* Y G H Z L19

T/FT/TTT/–T/FTTX C (Y F)* Y G H (Z K)* Z L18

T/–T/FTT/–T/FTTX C (Y F)* Y G H (Z K)* Z L17

FTTT/FT/TTTX C (Y F)*Y G H Z L16

–FTT/–T/FTTX C (Y F)* Y G H Z L15

T/FT/TTFTTTX C Y G H (Z K)* Z L14

T/–T/FTFTTTX C Y G H (Z K)* Z L13

FTTFTTTX C Y G H Z L12

Path condition by Segment Name

x/x Conditions at loop entry and exit



PT–35

Branch coverage problems

 Ignores implicit paths from compound paths
 11 paths in aggregate model vs 22 in full model

 Short-circuit evaluation means that many predicates might
not be evaluated
 A compound predicate is treated as a single statement.  If n

clauses, 2n combinations, but only 2 are tested

 Only a subset of all entry-exit paths is tested
 Two tests for branch coverage vs 4 tests for path coverage

 a = b = x = y = 0  and  a = x = 0 ∧ b = y = 1

if (a == b) x++;
if (x == y) x--;



PT–36

Multiple-condition coverage

 All true-false combinations of simple conditions in
compound predicates are considered at least once
 Guarantees statement, branch and predicate coverage

 Does not guarantee path coverage

 A truth table may be necessary

 Not necessarily achievable due to lazy evaluation or
mutually exclusive conditions

if ((x > 0) && (x < 5)) …



PT–37

Dealing with Loops

 Loops are highly fault-prone, so they need to be tested
carefully

 Simple view: Every loop involves a decision to traverse the
loop or not

 A bit better: Boundary value analysis on the index variable

 Nested loops have to be tested separately starting with
the innermost

 Once loops have been tested then can be condensed to a
single node



PT–38

Basis path testing

 For a vector space a basis set of vectors can be
constructed
 As a consequence every vector in the space is a linear

combination of the basis vectors

 By analogy a basis set of paths can be constructed
for a DD-path graph

 Problems
 One cannot assume that testing the basis set is sufficient

 Basis sets assume independence of members but program
text paths are dependent

 Analogous to variable dependencies causing problems for
boundary value testing



PT–39

Essential complexity

 The cyclomatic number for a graph is given by
 CN(G) = e – v + c

 e number of edges v number of vertices
c number of strongly connected components

 For strongly connected, need to add edges from
every sink to every source

 Condensation graphs are based on removing strong
components or DD-paths

 For programs remove structured program constructs
 One entry, one exit constructs for sequences, choices and

loops

 Each structured component once tested can be replaced by
a single node when condensing its graph



PT–40

Essential complexity – 2

 Program text that violates proper structure has
 Branches either into or out of the middle of a loop

 Branches either into or out of then and else phrases of
if…then…else statements

 This increases the cyclomatic number – i.e. the complexity
of the program

 The higher the cyclomatic number the more tests are
required.
 If complexity is too high

 Simplify the program rather than do more testing



PT–41

Guidelines

 Functional testing is too far from the program text

 Path testing is too close to the program text
 Obscures feasible and infeasible paths

 Use dataflow testing to move out a bit

 Path testing
 does not give good help in finding test cases

 does give good measures of quality of testing through
coverage analysis

 Basis path testing gives a lower bound on the number of
tests



PT–42

Guidelines – 2

 Path testing
 Provides set of metrics that cross-check functional testing

 Use to resolve gap and redundancy questions
 Missing DD-paths – have gaps
 Repeated DD-paths – have redundancy

 Distinctions are made with the following types of paths
 Feasible – infeasible

 Specified – unspecified

 Topologically possible – impossible



PT–43

Guidelines – 3

 Re-examine the Venn diagram in the context of path
testing

Specified
behaviour

Topologically possible paths

Programmed behaviour
– feasible paths


