
Path Testing and Test Coverage

Chapter 9

PT–2

Structural Testing

 Also known as glass/white/open box testing

 Structural testing is based on using specific knowledge of
the program source text to define test cases
 Contrast with functional testing where the program text is

not seen but only hypothesized

PT–3

Structural Testing

 Structural testing methods are amenable to
 Rigorous definitions

 Control flow, data flow, coverage criteria

 Mathematical analysis
 Graphs, path analysis

 Precise measurement
 Metrics, coverage analysis

PT–4

Program Graph - Definition

 Given a program written in an imperative programming
language, its program graph is a directed graph in
which nodes are statements and statement fragments,
and edges represent flow of control

PT–5

Triangle program text

1 output ("Enter 3 integers")
2 input (a, b, c)
3 output("Side a,b c: ", a, b, c)
4 if (a < b) and (b < a+c) and (c < a+b)
5 then isTriangle ← true
6 else isTriangle ← false
7 fi
8 if isTriangle
9 then if (a = b) and (b = c)
10 else output ("equilateral")
11 else if (a ≠ b) and (a ≠ c) and (b ≠ c)
12 then output ("scalene")
13 else output("isosceles")
14 fi
15 fi
16 else output ("not a triangle")
17 fi

PT–6

Program Graph - Example

PT–7

DD-Path – informal definition

 A decision-to-decision path (DD-Path) is a path chain
in a program graph such that
 Initial and terminal nodes are distinct

 Every interior node has indeg =1 and outdeg = 1
 The initial node is 2-connected to every other node in

the path
 No instances of 1- or 3-connected nodes occur

PT–8

Connectedness definition

 Two nodes n1 and n2 in a directed graph are
 0-connected iff no path exists between them

 1-connected iff a semi-path but no path exists between
them

PT–9

Connectedness definition – 2

 Two nodes n1 and n2 in a directed graph are

 2-connected iff a path exists between between them

 3-connected iff a path goes from n1 to n2 , and a path goes
from n2 to n1

PT–10

DD-Path – formal definition

 A decision-to-decision path (DD-Path) is a chain in a
program graph such that:
 Case 1: consists of a single node with indeg=0

 Case 2: consists of a single node with outdeg=0

 Case 3: consists of a single node with
 indeg ≥ 2 or outdeg ≥ 2

 Case 4: consists of a single node with
indeg =1, and outdeg = 1

 Case 5: it is a maximal chain of length ≥ 1

 DD-Paths are also known as segments

PT–11

Triangle program DD-paths

3G9

3F8

3E7

4D6

4C5

3B4

5A2,3

1First1

CasePathNodes

2Last17

4N16

3M15

3L14

4K13

4J12

3I11

4H10

CasePathNodes

PT–12

DD-Path Graph – informal definition

 Given a program written in an imperative language, its
DD-Path graph is a directed graph, in which
 nodes are DD-Paths of its program graph

 edges represent control flow between successor DD-Paths.

 Also known as Control Flow Graph

PT–13

Control Flow Graph Derivation

 Straightforward process

 Some judgment is required

 The last statement in a segment must be a predicate, a
loop control, a break, or a method exit

PT–14

Triangle program DD-path graph

PT–15

Java example program

public int displayLastMsg(int nToPrint) {
 np = 0;
 if ((msgCounter > 0) && (nToPrint > 0)) {
 for (int j = lastMsg; ((j != 0) && (np < nToPrint)); --j) {
 System.out.println(messageBuffer[j]);
 ++np;
 }
 if (np < nToPrint) {
 for (int j = SIZE; ((j != 0) && (np < nToPrint)); --j) {
 System.out.println(messageBuffer[j]);
 ++np;
 }
 }
 }
 return np;
}

PT–16

Java example program – Segments part 1

F }11

F ++np;10

F { System.out.println(messageBuffer[j]);9

F --j)8

E && (np < nToPrint));7

D ((j != 0)6

C{ for (int j = lastMsg;5

B && (nToPrint > 0))4

Aif ((msgCounter > 0)3

Anp = 0;2

public int displayLastMsg(int nToPrint) {1

Line Segment

PT–17

Java example program – Segments part 2

Line Segment

L}23

L return np;22

L }21

L }20

L }19

K ++np;18

K { System.out.println(messageBuffer[j]);17

K --j)16

J (np < nToPrint));15

I ((j != 0) &&14

H { for (int j = SIZE;13

G if (np < nToPrint)12

PT–18

Java example program displayLastMsg – DD-path graph

PT–19

DD graphs definition – 1

 Depict which program segments may be followed by
others

 A segment is a node in the CFG

 A conditional transfer of control is a branch represented
by an edge

 An entry node (no inbound edges) represents the entry
point to a method

 An exit node (no outbound edges) represents an exit
point of a method

PT–20

DD graphs definition – 2

 An entry-exit path is a path from the entry node to the
exit node

 Path expressions represent paths as sequences of
nodes

 Loops are represented as segments within parentheses
followed by an asterisk

 There are 22 different path expressions in our example

PT–21

Path expressions – part 1

A B C D E G H I L11

A B C (D E F)* D E G H (I J K)* I J L10

A B C D G H (I J K)* I L9

A B C D G H I J L8

A B C D G H I L7

A B C (D E F)* D E G L6

A B C (D E F)* D G L5

A B C D E G L4

A B C D G L3

A B L2

A L1

Entry-Exit path

PT–22

Path expressions – part 2

A B C (D E F)* D E G H (I J K)* I J L22

A B C (D E F)* D E G H (I J K)* I L21

A B C (D E F)* D E G H I J L20

A B C (D E F)* D E G H I L19

A B C (D E F)* D G H (I J K)* I J L18

A B C (D E F)* D G H (I J K)* I L17

A B C (D E F)* D G H I J L16

A B C (D E F)* D G H I L15

A B C D E G H (I J K)* I J L14

A B C D E G H (I J K)* I L13

A B C D E G H I J L12

Entry-Exit path

PT–23

Paths displayLastMsg – decision table – part 1

JIGEDBAEntry/Exit Path

–FTFTTTA B C D E G H I L11

TT/FT/T–FTTA B C D G H (I J K)* I J L10

TT/–T/F–FTTA B C D G H (I J K)* I L9

FTT–FTTA B C D G H I J L8

–FT–FTTA B C D G H I L7

––FT/FT/TTTA B C (D E F)* D E G L6

––FT/–T/FTTA B C (D E F)* D G L5

–––FTTTA B C D E G L4

––F–FTTA B C D G L3

–––––FTA B L2

––––––FA L1

Path condition by Segment Name

x/x Conditions at loop entry and exit

PT–24

Branch coverage – decision table example – part 2

JIGEDBAEntry/Exit Path

TTTT/FT/TTTA B C (D E F)* D E G H (I J K)* I J L22

TTTT/FT/TTTA B C (D E F)* D E G H (I J K)* I L21

FTTT/FT/TTTA B C (D E F)* D E G H I J L20

–FTT/FT/TTTA B C (D E F)* D E G H I L19

T/FT/TTT/–T/FTTA B C (D E F)* D G H (I J K)* I J L18

T/–T/FTT/–T/FTTA B C (D E F)* D G H (I J K)* I L17

FTTT/FT/TTTA B C (D E F)* D G H I J L16

–FTT/–T/FTTA B C (D E F)* D G H I L15

T/FT/TTFTTTA B C D E G H (I J K)* I J L14

T/–T/FTFTTTA B C D E G H (I J K)* I L13

FTTFTTTA B C D E G H I J L12

Path condition by Segment Name

x/x Conditions at loop entry and exit

PT–25

Program text coverage Metrics

 C0 Every Statement

 C1 Every DD-path

 C1p Every predicate to each outcome

 C2 C1 coverage + loop coverage

 Cd C1 coverage + every dependent pair of DD-paths

 CMCC Multiple condition coverage

 Cik Every program path that contains k loop repetitions

 Cstat Statistically significant faction of the paths

 C∞ Every executable path

PT–26

Program text coverage models

 Statement Coverage

 Segment Coverage

 Branch Coverage

 Multiple-Condition Coverage

PT–27

Statement coverage – C0

 Achieved when all statements in a method have been
executed at least once

 A test case that will follow the path expression below will
achieve statement coverage in our example

 One test case is enough to achieve statement coverage!

A B C (D E F)* D G H (I J K)* I L

PT–28

Segment coverage

 Segment coverage counts segments rather than statements

 May produce drastically different numbers
 Assume two segments P and Q
 P has one statement, Q has nine
 Exercising only one of the segments will give 10% or 90%

statement coverage
 Segment coverage will be 50% in both cases

PT–29

Statement coverage problems

 Predicate may be tested for only one value (misses many
bugs)

 Loop bodies may only be iterated once

 Statement coverage can be achieved without branch
coverage. Important cases may be missed

String s = null;
if (x != y) s = “Hi”;
String s2 = s.substring(1);

PT–30

Branch coverage – C1p

 Achieved when every path from a node is executed at
least once

 At least one true and one false evaluation for each
predicate

 Can be achieved with D+1 paths in a control flow graph
with D 2-way branching nodes and no loops
 Even less if there are loops

 In the Java example displayLastMsg branch coverage is
achieved with three paths – see next few slides

X L
X C (Y F)* Y G L
X C (Y F)* Y G H (Z K)* Z L

PT–31

Java example program displayLastMsg – DD-path graph

X, Y & Z are shorthand for the nodes
within the dotted boxes; used for branch testing

PT–32

Java example program displastLastMsg
– aggregate predicate DD-path graph

PT–33

Paths aggregate – decision table – part 1

JIGEDBABranch Coverage

–FTFTTTX C Y G H Z L11

TT/FT/T–FTTX C Y G H (Z K)* I L10

TT/–T/F–FTTX C Y G H (Z K)* I L9

FTT–FTTX C Y G H Z L8

–FT–FTTX C Y G H Z L7

––FT/FT/TTTX C (Y F)* Y G L6

––FT/–T/FTTX C (Y F)* Y G L5

–––FTTTX C Y G L4

––F–FTTX C Y G L3

–––––FTX L2

––––––FX L1

Path condition by Segment Name

x/x Conditions at loop entry and exit

PT–34

Branch coverage – decision table example – part 2

JIGEDBABranch Coverage

TTTT/FT/TTTX C (Y F)* Y G H (Z K)* Z L22

TTTT/FT/TTTX C (Y F)* Y G H (Z K)* Z L21

FTTT/FT/TTTX C (Y F)* Y G H Z L20

–FTT/FT/TTTX C (Y F)* Y G H Z L19

T/FT/TTT/–T/FTTX C (Y F)* Y G H (Z K)* Z L18

T/–T/FTT/–T/FTTX C (Y F)* Y G H (Z K)* Z L17

FTTT/FT/TTTX C (Y F)*Y G H Z L16

–FTT/–T/FTTX C (Y F)* Y G H Z L15

T/FT/TTFTTTX C Y G H (Z K)* Z L14

T/–T/FTFTTTX C Y G H (Z K)* Z L13

FTTFTTTX C Y G H Z L12

Path condition by Segment Name

x/x Conditions at loop entry and exit

PT–35

Branch coverage problems

 Ignores implicit paths from compound paths
 11 paths in aggregate model vs 22 in full model

 Short-circuit evaluation means that many predicates might
not be evaluated
 A compound predicate is treated as a single statement. If n

clauses, 2n combinations, but only 2 are tested

 Only a subset of all entry-exit paths is tested
 Two tests for branch coverage vs 4 tests for path coverage

 a = b = x = y = 0 and a = x = 0 ∧ b = y = 1

if (a == b) x++;
if (x == y) x--;

PT–36

Multiple-condition coverage

 All true-false combinations of simple conditions in
compound predicates are considered at least once
 Guarantees statement, branch and predicate coverage

 Does not guarantee path coverage

 A truth table may be necessary

 Not necessarily achievable due to lazy evaluation or
mutually exclusive conditions

if ((x > 0) && (x < 5)) …

PT–37

Dealing with Loops

 Loops are highly fault-prone, so they need to be tested
carefully

 Simple view: Every loop involves a decision to traverse the
loop or not

 A bit better: Boundary value analysis on the index variable

 Nested loops have to be tested separately starting with
the innermost

 Once loops have been tested then can be condensed to a
single node

PT–38

Basis path testing

 For a vector space a basis set of vectors can be
constructed
 As a consequence every vector in the space is a linear

combination of the basis vectors

 By analogy a basis set of paths can be constructed
for a DD-path graph

 Problems
 One cannot assume that testing the basis set is sufficient

 Basis sets assume independence of members but program
text paths are dependent

 Analogous to variable dependencies causing problems for
boundary value testing

PT–39

Essential complexity

 The cyclomatic number for a graph is given by
 CN(G) = e – v + c

 e number of edges v number of vertices
c number of strongly connected components

 For strongly connected, need to add edges from
every sink to every source

 Condensation graphs are based on removing strong
components or DD-paths

 For programs remove structured program constructs
 One entry, one exit constructs for sequences, choices and

loops

 Each structured component once tested can be replaced by
a single node when condensing its graph

PT–40

Essential complexity – 2

 Program text that violates proper structure has
 Branches either into or out of the middle of a loop

 Branches either into or out of then and else phrases of
if…then…else statements

 This increases the cyclomatic number – i.e. the complexity
of the program

 The higher the cyclomatic number the more tests are
required.
 If complexity is too high

 Simplify the program rather than do more testing

PT–41

Guidelines

 Functional testing is too far from the program text

 Path testing is too close to the program text
 Obscures feasible and infeasible paths

 Use dataflow testing to move out a bit

 Path testing
 does not give good help in finding test cases

 does give good measures of quality of testing through
coverage analysis

 Basis path testing gives a lower bound on the number of
tests

PT–42

Guidelines – 2

 Path testing
 Provides set of metrics that cross-check functional testing

 Use to resolve gap and redundancy questions
 Missing DD-paths – have gaps
 Repeated DD-paths – have redundancy

 Distinctions are made with the following types of paths
 Feasible – infeasible

 Specified – unspecified

 Topologically possible – impossible

PT–43

Guidelines – 3

 Re-examine the Venn diagram in the context of path
testing

Specified
behaviour

Topologically possible paths

Programmed behaviour
– feasible paths

