
FTR–1

Functional Testing Review

Chapter 8

FTR–2

Functional Testing

 We saw three types of functional testing
 Boundary Value Testing

 Equivalence Class Testing

 Decision Table-Based Testing

 What is the common thread among the above
methods?

 What do we look at when comparing methods?

FTR–3

Functional Testing

 The common thread among these techniques is that they all
view a program as a mathematical function that maps its
inputs to its outputs.

 Look at
 testing effort

 testing efficiency

 testing effectiveness

FTR–4

Boundary Value Test Cases

Not a Triangle10010020015

Isosceles10010019914

Equilateral10010010013

Isosceles100100212

Isosceles100100111

Not a Triangle10020010010

Isosceles1001991009

Equilateral1001001008

Isosceles10021007

Isosceles10011006

Not a Triangle2001001005

Isosceles1991001004

Equilateral1001001003

Isosceles21001002

Isosceles11001001

Expected OutputcbaTest Case

FTR–5

Equivalence Class Test Cases

Equilateral555WN1

Isosceles322WN2

Scalene543WN3

Not a Triangle214WN4

c not in range20155WR6

b not in range52015WR5

a not in range55201WR4

c not in range-155WR3

b not in range5-15WR2

a not in range55-1WR1

Expected
OutputcbaTest Case

FTR–6

Decision Table Test Cases

Scalene543DT11

Isosceles223DT10

Isosceles232DT9

Impossible?????????DT8

Isosceles322DT7

Impossible?????????DT6

Impossible?????????DT5

Equilateral555DT4

Not a Triangle421DT3

Not a Triangle241DT2

Not a Triangle214DT1

Expected OutputcbaCase ID

FTR–7

Trend Line Testing Effort

 What does the trend line look like for the following
axes?
 Number of test cases

 Test method – boundary, equivalence, decision

 What does the trend line look like for the following
axes?
 Effort to identify test cases

 Test method – boundary, equivalence, decision

FTR–8

Trend Line Testing Effort – number of test cases

Boundary
value

Equivalence
class

Decision
table

Sophistication

high

low

Number of Test Cases

FTR–9

Trend Line Testing Effort – identifying test cases

Boundary
value

Equivalence
class

Decision
table

Sophistication

high

low

Effort to Identify Test Cases

FTR–10

Testing Effort – sophistication

 Describe the level of sophistication of the following
test methods; how are the methods used to generate
test cases?
 Boundary value

 Equivalence classes

 Decision tables

FTR–11

Testing Effort – sophistication 2

 Boundary Value Testing has no recognition of data or logical
dependencies
 Mechanical generation of test cases

 Equivalence Class Testing takes into account data
dependencies
 More thought and care is required to define the equivalence

classes

 Mechanical generation after that

FTR–12

Testing Effort – sophistication 3

 The decision table technique is the most sophisticated, because it
requires that we consider both data and logical dependencies.
 Iterative process
 Allows manual identification of redundant test cases

 Tradeoff between test identification effort and test execution effort

FTR–13

Testing Efficiency

 What are the fundamental limitation of functional testing?

 What is the "Testing efficiency" question? What problem
are we trying to solve?

FTR–14

Testing Efficiency – 2

 Fundamental limitations of functional testing
 Gaps of untested functionality

 Redundant tests

 Testing efficiency question: How can we create a set of
test cases that is “just right”?
 Difficult to answer. Can only rely on the general knowledge that

more sophisticated techniques, such as decision tables, are
usually more efficient

 Structural testing methods will allow us to define more
interesting metrics for efficiency

FTR–15

Testing Efficiency Example

 The worst case boundary analysis for the NextDate program
generated 125 cases. These are fairly redundant (check
January 1 for five different years, only a few February cases
but none on February 28, and February 29, and no major
testing for leap years)

 The strong equivalence class test cases generated 36 test
cases 11 of which are impossible.

 The decision table technique generated 22 test cases (fairly
complete)

FTR–16

Testing Effectiveness

 How effective is a method or a set of test cases for
finding faults present in a program?

FTR–17

Testing Effectiveness – 2

 Difficult to answer because

 It presumes we know all faults in a program

 It is impossible to prove that a program is free of faults
(equivalent to solving the halting problem)

 What is the best we can do?

FTR–18

Testing Effectiveness – 3

 Given a fault type we can choose testing methods that are
likely to reveal faults of that type

 Use knowledge related to the most likely kinds of faults to occur

 Track kinds and frequencies of faults in the software
applications we develop

FTR–19

Guidelines

 What guidelines can you give for functional testing?
 What attributes/properties do you consider?

FTR–20

Guidelines – 2

 Kinds of faults may reveal some pointers as to which testing
method to use.

 If we do not know the kinds of faults that are likely to occur
in the program then the attributes most helpful in choosing
functional testing methods are:
 Whether the variables represent physical or logical quantities

 Whether or not there are dependencies among variables

 Whether single or multiple faults are assumed

 Whether exception handling is prominent

FTR–21

Guidelines – 3

 If the variables refer to physical quantities and/or are
independent, domain testing and equivalence testing can be
considered.

 If the variables are dependent, decision table testing can be
considered

 If the single-fault assumption is plausible to assume,
boundary value analysis and robustness testing can be
considered

FTR–22

Guidelines – 4

 If the multiple-fault assumption is plausible to assume, worst
case testing, robust worst case testing, and decision table
testing can be considered

 If the program contains significant exception handling,
robustness testing and decision table testing can be
considered

 If the variables refer to logical quantities, equivalence class
testing and decision table testing can be considered

FTR–23

Functional Testing Decision Table

XXA8: Decision table

XXXXXXA7: Strong normal equivalence testing

XXXXA6: Weak normal equivalence testing

XXXXA5: Weak robust equivalence testing

XA4: Robust worst case testing

XA3: Worst case testing

XA2: Robustness testing

XA1: Boundary value analysis

-NYNY-NYNYC4: Exception handling?

-NNYY-NNYYC3: Single fault assumption?

NYYYYNYYYYC2: Independent Variables?

LLLLLPPPPPC1: Variables (P=Physical, L=Logical)?

