Decision Table-Based Testing

Decision Tables - Wikipedia

- A precise yet compact way to model complicated logic
- Associate conditions with actions to perform
- Can associate many independent conditions with several actions in an elegant way

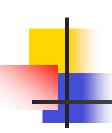
Decision Table Terminology

Stub	Rule 1	Rule 2	Rules 3,4	Rule 5	Rule 6	Rules 7,8
c1	T	T	T	F	ш	F
c2	T	T	ш	T	۲	L
c3	T	ш	1	T	ш	1
a1	X	X		X		
a2	X				X	
a3		X		X		
a4			X			X

condition stubs	condition entries
action stubs	action entries

Decision Table Terminology – 2

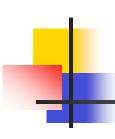
- Condition entries binary values
 - We have a limited entry table
- Condition entries have more than two values
 - We have an extended entry table


condition stubs	condition entries
action stubs	action entries

Printer Troubleshooting DT

	Printer does not print	Y	Y	Y	Y	N	N	N	N
Conditions	A red light is flashing	Y	Y	N	N	Y	Y	N	N
	Printer is unrecognized	Y	N	Y	N	Y	N	Y	N
	Check the power cable			X					
	Check the printer-computer cable	X		X					
Actions	Ensure printer software is installed	X		X		X		X	
	Check/replace ink	X	X			X	X		
	Check for paper jam		X		X				

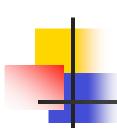
A complete limited entry table


Test cases for decision tables

- How are the entries in a decision table interpreted with respect to test cases?
 - Condition entries?
 - Action entries?

Test cases for decision tables – 2

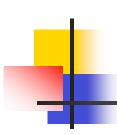
- Conditions are interpreted as
 - Input
 - Equivalence classes of inputs
- Actions are interpreted as
 - Output
 - Major functional processing portions
- With complete decision tables
 - Have complete set of test cases



Triangle Decision Table

1 2 3 4 5 6 7 8 9

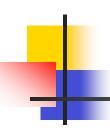
C1: <a, b,c=""> forms a triangle?</a,>	F	Т	Т	Т	Т	Т	Т	Т	Т
C3: a = b?	_	Т	Т	Т	Т	F	F	F	F
C4: a = c?	_	Т	Т	F	F	Т	Т	F	F
C5: b = c?	_	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	Х								
A2: Scalene									X
A3: Isosceles					Х		X	X	
A4: Equilateral		X							
A5: Impossible			X	X		X			


Action added by a tester showing impossible rules

Triangle Decision Table – refined

	1	2	3	4	5	6	7	8	9	10	11
C1-1: a < b+c?	F	Т	Т	Τ	Η	Т	Η	Т	Т	Т	Т
C1-2: b < a+c?	_	F	Т	Т	Τ	Т	Т	Т	Т	Т	Т
C1-3: c < a+b?	_	_	F	Т	Τ	Т	Т	Т	Т	Т	Т
C2: $a = b$?	_	_	_	Т	Т	Т	Т	F	F	F	F
C3: $a = c$?	_	_	_	Т	Т	F	F	Т	Т	F	F
C4: $b = c$?	_	_	_	Т	F	Т	F	Т	F	Т	F
A1: Not a Triangle	X	X	X								
A2: Scalene											X
A3: Isosceles							X		X	X	
A4: Equilateral				X							
A5: Impossible					X	X		X			

Similar to equivalence classes we can refine the conditions


Triangle Test Cases

Case ID	a	b	С	Expected Output
1	4	1	2	Not a Triangle
2	1	4	2	Not a Triangle
3	1	2	4	Not a Triangle
4	5	5	5	Equilateral
5	???	???	???	Impossible
6	???	???	???	Impossible
7	2	2	3	Isosceles
8	???	???	???	Impossible
9	2	3	2	Isosceles
10	3	2	2	Isosceles
11	3	4	5	Scalene

Don't care entries and rule counts

- Limited entry tables with N conditions have 2^N rules.
- Don't care entries reduce the number of explicit rules by implying the existence of non-explicitly stated rules.
 - How many rules does a table contain including all the implied rules due to don't care entries?


Don't care entries and rule counts – 2

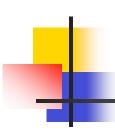
- Each don't care entry in a rule doubles the count for the rule
- For each rule determine the corresponding rule count
- Total the rule counts


Don't care entries and rule counts – 3

1	C1-1: a < b+c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	
2	C1-2: b < a+c?	_	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	
3	C1-3: c < a+b?	_	_	F	Т	Т	Т	Т	Т	Т	Т	Т	
4	C2: a = b?	_	_	_	Т	Т	Т	Т	F	F	F	F	
5	C3: a = c?	_	_	_	Т	Т	F	F	Т	Т	F	F	
6	C4: $b = c$?	_	_	_	Т	F	Т	F	Т	F	Т	F	
	Rule count	32	16	8	1	1	1	1	1	1	1	1	+/ = 64
		•		•	•			•		•	•		= 2 ⁶

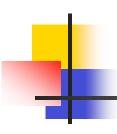
Don't care entries and rule counts – 4

- How many rules do extended entry tables have?
- What is the rule count with don't care entries?
 - See DDT-16, -17 (NextDate 2'nd try)
 - See DDT-19, -20 (NextDate 3'rd try)
 - See Table 7.9, page 107, for a redundant table
 - More rules than combination count of conditions
 - See Table 7.10, page 108, for an inconsistent table
 - More rules than combination count of conditions


NextDate Decision Table

- The NextDate problem illustrates the correspondence between equivalence classes and decision table structure
- The NextDate problem illustrates the problem of dependencies in the input domain
 - Decision tables can highlight such dependencies
 - Impossible dates can be clearly marked as a separate action

NextDate Equivalence Classes – for 1st try


```
M1 = \{month : 1 ... 12 \mid days(month) = 30 \}
M2 = \{month : 1 ... 12 \mid days(month) = 31 \}
M3 = \{month : \{2\}\}
                                       As in discussion for
D1 = \{day : 1 ... 28\}
                                        equivalence classes
D2 = \{day : \{29\}\}
D3 = \{day : \{30\}\}
D4 = \{day : \{31\}\}
Y1 = \{ year : 1812 ... 2012 | leap_year (year) \}
Y2 = \{year : 1812 ... 2012 \mid common_year (year) \}
```


NextDate decision table – mutually exclusive conditions

C1: month in M1?	Т	_	1
C2: month in M2?	_	Т	_
C3: month in M3?	_	_	Т
A1: Impossible			
A2: Next Date			

Because a month is in an equivalence class we cannot have T for more than one entry. The do not care entries are really F.



NextDate DT (1st try - partial)

How many rules

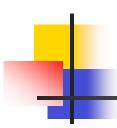
- for a complete table?
- with don't care entries?

C1: month in M1?	Т	Т	Т	Т	Т	Т	Т	Т				
C2: month in M2?									Т	Т	Т	Т
C3: month in M3?												
C4: day in D1?	Т	Т							Т	Т		
C5: day in D2?			Т	Т							Т	Т
C6: day in D3?					Т	Т						
C7: day in D4?							Т	Т				
C8: year in Y1?	Т		Т		Т		Т		Т		Т	
C9: year in Y2?		Т		Т		Т		Т		Т		Т
A1: Impossible							Χ	Χ				
A2: Next Date	X	X	X	X	X	X			X	X	X	X

NextDate Equivalence Classes – for 2nd try

```
M1 = \{month : 1 ... 12 \mid days(month) = 30 \}
M2 = \{month : 1 ... 12 \mid days(month) = 31 \}
M3 = \{month : \{2\}\}
D1 = \{day : 1 ... 28\}
                                        Handle leap year better
D2 = {day : {29}}
D3 = \{day : \{30\}\}
D4 = \{day : \{31\}\}
Y1 = {year : {2000}}
Y2 = \{ year : 1812 ... 2012 \mid leap_year (year) \land year \neq 2000 \}
Y3 = \{ year : 1812 ... 2012 \mid common_year (year) \}
```


NextDate DT (2nd try - part 1)


This table has 16 rules. How many rules for a complete table?

	1	2	3	4	5	6	7	8
C1: month in	M1	M1	M1	M1	M2	M2	M2	M2
C2: day in	D1	D2	D3	D4	D1	D2	D3	D4
C3: year in	_	_	_	_	_	_	_	_
A1: Impossible				X				
A2: Increment day	X	X			X	X	X	
A3: Reset day			X					X
A4: Increment month			X					???
A5: reset month								???
A6: Increment year								???

NextDate DT (2nd try - part 2)

	9	10	11	12	13	14	15	16
C1: month in	М3	М3	М3	М3	М3	М3	M3	М3
C2: day in	D1	D1	D1	D2	D2	D2	D3	D3
C3: year in	Y1	Y2	Y3	Y1	Y2	Y3	_	_
A1: Impossible				X		Х	X	X
A2: Increment day		X						
A3: Reset day	Х		Х		X			
A4: Increment month	Х		Х		X			
A5: reset month								
A6: Increment year								

New Equivalence Classes – for 3rd try

```
M1 = \{month : 1 ... 12 \mid days(month) = 30 \}
M2 = \{month : 1 ... 12 \mid days(month) = 31 \land month \neq 12 \}
M3 = \{month : \{12\}\}
M4 = \{month : \{2\}\}
D1 = {day : 1 ... 27}
                                     Handle end of month and
D2 = {day : {28}}
                                     year better
D3 = \{day : \{29\}\}
D4 = \{day : \{30\}\}
D5 = {day : {31}}
Y1 = \{ year : 1812 ... 2012 | leap_year (year) \}
Y2 = \{year : 1812 ... 2012 \mid common_year (year) \}
```


NextDate DT (3rd try - part 1)

A 22 rule table

1	2	3	4	5	6	7	8	9	10

C1: month in		M1	M1	M1	M1	M2	M2	M2	M2	M2
C2: day in		D2	D3	D4	D5	D1	D2	D3	D4	D5
C3: year in		_	_	_	_	_	_	_	_	_
A1: Impossible					Χ					
A2: Increment day	X	Χ	X			Χ	X	Χ	Χ	
A3: Reset day				Χ						X
A4: Increment month				X						X
A5: reset month										
A6: Increment year										

NextDate DT (3rd try - part 2)

11 12 13 14 15 16 17 18 19 20 21 22

C1: month in		M3	М3	М3	M3	M4						
C2: day in		D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
C3: year in	_	_	_	-	-	_	Y1	Y2	Y1	Y2	ı	_
A1: Impossible										Χ	Χ	Χ
A2: Increment day	X	X	X	X		Χ	X					
A3: Reset day					X			X	X			
A4: Increment month								X	Χ			
A5: reset month					X							
A6: Increment year					X							

Decision Table - Equivalence class comparison

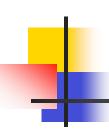
- It has been shown that equivalence classes and decision tables can be closely related.
 - What benefit do we get from using equivalence classes in place of decision tables?
 - What benefit do we get from using decision tables in place of equivalence classes?

Applicability

- The specification is given or can be converted to a decision table.
- The order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- The order of rule evaluation has no effect on resulting action.
- Once a rule is satisfied and the action selected, no other rule need be examined.
- The order of executing actions in a satisfied rule is of no consequence.

Applicability – 2

- The restrictions do not in reality eliminate many potential applications.
 - In most applications, the order in which the predicates are evaluated is immaterial.
 - Some specific ordering may be more efficient than some other but in general the ordering is not inherent in the program's logic.


Decision Tables – Properties

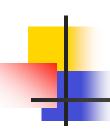
- You have constructed a decision table
 - Before deriving test cases, what properties should the decision table have?

Decision Tables – Properties – 2

- Before deriving test cases, ensure that
 - The rules are complete
 - Every combination of predicate truth values is explicit in the decision table
 - The rules are consistent
 - Every combination of predicate truth values results in only one action or set of actions

- Decision Table testing is most appropriate for programs where one or more of the conditions hold.
 - What are those conditions?

- Decision Table testing is most appropriate for programs where
 - There is a lot of decision making
 - There are important logical relationships among input variables
 - There are calculations involving subsets of input variables
 - There are cause and effect relationships between input and output
 - There is complex computation logic (high cyclomatic complexity)



What are some problems with using decision tables?

- Decision tables do not scale up very well
 - May need to
 - Use extended entry decision tables
 - Algebraically simplify tables

- Decision tables need to be iteratively refined
 - The first attempt may be far from satisfactory
 - Similar to using equivalence classes

Redundant rules

- More rules than combination count of conditions
- Actions are the same
- Too many test cases
- See Table 7.9, page 107

Inconsistent rules

- More rules than combination count of conditions
- Actions are different for the same conditions
- See Table 7.10, page 108

Missing rules

Incomplete table