
Reporting and analyzing bugs

How to communicate efficiently to the
programmer

RAB–2

Some vocabulary

 An error (or mistake) is something people make

 A fault is the result of an error: inaccurate requirements
text, erroneous design, buggy source code etc.
 Faults of omission are difficult to detect

 A fault won’t yield a failure without the conditions that
trigger it.
 Example: if the program yields 2+2=5 on the 10th time you

use it, you won’t see the error before or after the 10th use.

RAB–3

Some vocabulary

 The failure is the program’s actual incorrect or missing
behavior under the error-triggering conditions.
 A failure occurs when a fault executes

 An incident is a characteristic of a failure that helps you
recognize that the program has failed.

RAB–4

Vocabulary example

 Here’s a defective program

 INPUT A
 INPUT B
 PRINT A / B

 What is the error? What is the fault?

 What is the critical condition?

 What will we see as the incident of the failure?

RAB–5

Bug reporting

 Testers report bugs to programmers

 Problem Report forms are commonly used

 If the report is not clear and understandable, the bug will
not get fixed

 To write a fully effective report you must:
 Explain how to reproduce the problem
 Analyze the error so that it can be described with a minimum

number of steps
 Write a report that is complete, easy to understand, and non-

antagonistic

RAB–6

What kind of error to report?

 Report all following types of problems, but keep straight in
your mind, and on the bug report, which type you’re
reporting.

 Coding Error
 The program doesn’t do what the programmer would

expect it to do.

 Design Issue
 It’s doing what the programmer intended, but a

reasonable customer would be confused or unhappy with
it.

 More on the next slide…

RAB–7

What kind of error to report?

 Requirements Issue
 The program is well designed and well implemented, but

it won’t meet one of the customer’s requirements.

 Documentation / Code Mismatch
 Report this to the programmer (via a bug report) and to

the writer (usually via a memo or a comment on the
manuscript).

 Specification / Code Mismatch
 Sometimes the spec is right; sometimes the code is right

and the spec should be changed.

RAB–8

Bug Reports

 A bug report is a tool that you use to sell the
programmer on the idea of spending her time and energy
to fix a bug.

 Bug reports are your primary work product as a tester.
This is what people outside of the testing group will most
notice and most remember of your work.

 The best tester isn’t the one who finds the most bugs or
who embarrasses the most programmers. The best tester
is the one who gets the most bugs fixed.

RAB–9

Selling Bugs

 Time is in short supply. If you want to convince the
programmer to spend his time fixing your bug, you may
have to sell him on it.

 Sales revolves around two fundamental objectives:
 Motivate the buyer (Make him WANT to fix the bug.)
 Overcome objections (Get past his excuses and reasons for

not fixing the bug.)

RAB–10

Motivating the Bug Fixer

 Some things that will often make programmers want to fix
the bug:

 It looks really bad.

 It looks like an interesting puzzle and piques the
programmer’s curiosity.

 It will affect lots of people.

 Getting to it is trivially easy.

 It has embarrassed the company, or a bug like it embarrassed
a competitor.

 Management (that is, someone with influence) has said that
they really want it fixed.

RAB–11

Motivating the Bug Fix

 When you run a test and find a failure, you’re looking at a
symptom, not at the underlying fault. You may or may not
have found the best example of a failure that can be
caused by the underlying fault.

 Therefore you should do some follow-up work to try to
prove that a defect:

 is more serious than it first appears.
 is more general than it first appears.

RAB–12

Look for follow-up errors

 When you find a coding error, you have the program in a
state that the programmer did not intend and probably did
not expect. There might also be data with supposedly
impossible values.

 The program is now in a vulnerable state. Keep testing it
and you might find that the real impact of the underlying
fault is a much worse failure, such as a system crash or
corrupted data.

RAB–13

Types of follow-up testing

 Vary the behaviour (change the conditions by
changing what the test case does)

 Vary the options and settings of the program (change
the conditions by changing something about the
program under test).

 Vary the software and hardware environment.

RAB–14

1. Vary Your Behaviour

 Keep using the program after you see the problem

 Bring it to the failure case again (and again)
 If the program fails when you do X, then do X many times. Is

there a cumulative impact?

 Try things that are related to the task that failed
 For example, if the program unexpectedly but slightly scrolls

the display when you add two numbers, try tests that affect
adding or that affect the numbers. Do X, see the scroll. Do Y
then do X, see the scroll. Do Z, then do X, see the scroll, etc.
(If the scrolling gets worse or better in one of these tests,
follow that up, you’re getting useful information for
debugging.)

RAB–15

1. Vary Your Behaviour

 Try things that are related to the failure
 If the failure is unexpected scrolling after adding, try

scrolling first, then adding. Try repainting the screen, then
adding. Try resizing the display of the numbers, then
adding.

 Try entering the numbers more quickly or changing the
speed of your activity in some other way

 Also try other exploratory testing techniques
 For example, you might try some interference tests. Stop

the program or pause it just as the program is failing. Or try
it while the program is doing a background save. Does that
cause data loss corruption along with this failure?

RAB–16

2. Vary Options and Settings

 In this case, the steps to achieve the failure are taken as
given. Try to reproduce the bug when the program is in a
different state:

 Change the values of environment variables.

 Change how the program uses memory.

 Change anything that looks like it might be relevant that
allows you to change as an option.

 For example, suppose the program scrolls unexpectedly
when you add two numbers. Maybe you can change the
size of the program window, or the precision (or displayed
number of digits) of the numbers

RAB–17

3. Vary the Configuration

 A bug might show a more serious failure if you run the
program with less memory, a higher resolution printer,
more device interrupts coming in etc.

 If there is anything involving timing, use a really slow (or very
fast) computer, link, modem or printer, etc..

 If there is a video problem, try other resolutions on the video
card. Try displaying MUCH more (less) complex images.

RAB–18

3. Vary the Configuration

 We are interested in whether there is a particular
configuration that will show the bug more spectacularly.

 Returning to the example (unexpected scrolling when you
add two numbers), try things like:

 Different video resolutions

 Different mouse settings if you have a wheel mouse that
does semi-automated scrolling

 An NTSC (television) signal output instead of a traditional
(XGA or SVGA, etc.) monitor output.

RAB–19

 Bug New to This Version?

 In many projects, an old bug (from a previous release of
the program) might not be taken very seriously if there
weren’t lots of customer complaints.

 If you know it’s an old bug, check its history.

 The bug will be taken more seriously if it is new.

 You can argue that it should be treated as new if you can
find a new variation or a new symptom that didn’t exist in
the previous release. What you are showing is that the new
version’s code interacts with this error in new ways. That’s a
new problem.

RAB–20

Motivating the Bug Fix:
Show it is More General

 Look for configuration dependence

 Bugs that don’t fail on the programmer’s machine are
much less credible (to that programmer).
 If they are configuration dependent, the report will be much

more credible if it identifies the configuration dependence
directly (and so the programmer starts out with the
expectation that it won’t fail on all machines.)

RAB–21

Configuration dependence

 In the ideal case (standard in many companies), test on 2
machines

 Do your main testing on Machine 1. Maybe this is your
powerhouse: latest processor, newest updates to the operating
system, fancy printer, video card, USB devices, huge hard disk, lots
of RAM, cable modem, etc.

 When you find a defect, use Machine 1 as your bug reporting
machine and replicate on Machine 2. Machine 2 is totally different.
Different processor, different keyboard and keyboard driver,
different video, barely enough RAM, slow, small hard drive, dial-up
connection with a link that makes turtles look fast.

RAB–22

Configuration dependence

 Some people do their main testing on the turtle and use
the power machine for replication.

 Write the steps, one by one, on the bug form at Machine
1. As you write them, try them on Machine 2. If you get
the same failure, you’ve checked your bug report while
you wrote it. (A valuable thing to do.)

 If you don’t get the same failure, you have a configuration
dependent bug. Time to do troubleshooting. But at least
you know that you have to.

RAB–23

Uncorner your corner cases

 We test at extreme values because these are the most likely
places to show a defect. But once we find the defect, we don’t have
to stick with extreme value tests.

 Try mainstream values. These are easy settings that should pose
no problem to the program. Do you replicate the bug?

 If yes, write it up, referring primarily to these mainstream
settings. This will be a very credible bug report.

RAB–24

Uncorner your corner cases

 If the mainstream values don’t yield failure, but the
extremes do, then do some troubleshooting around the
extremes.

 Is the bug tied to a single setting (a true corner case)?

 Or is there a small range of cases? What is it?

 In your report, identify the narrow range that yields failures.
The range might be so narrow that the bug gets deferred.
That might be the right decision.

 Your reports help the company choose the right bugs to
fix before a release, and size the risks associated with
the remaining ones.

RAB–25

Overcoming Objections:
Analysis of the Failure

 Things that will make programmers resist spending their
time on the bug:

 The programmer can’t replicate the defect.

 Strange and complex set of steps required to induce the
failure.

 Not enough information to know what steps are required,
and it will take a lot of work to figure them out.

 The programmer doesn’t understand the report.

 Unrealistic (e.g. “corner case”)

 It’s a feature.

RAB–26

Non-Reproducible Errors

 Always report non-reproducible errors. If you report them
well, programmers can often figure out the underlying
problem.

 You must describe the failure as precisely as possible. If
you can identify a display or a message well enough, the
programmer can often identify a specific point in the code
that the failure had to pass through.

RAB–27

Non-Reproducible Errors

 When you realize that you can’t reproduce the bug, write
down everything you can remember. Do it now, before
you forget even more.

 As you write, ask yourself whether you’re sure that you
did this step (or saw this thing) exactly as you are
describing it. If not, say so. Draw these distinctions right
away. The longer you wait, the more you’ll forget.

RAB–28

Non-Reproducible Errors

 Maybe the failure was a delayed reaction to something
you did before starting this test or series of tests. Before
you forget, note the tasks you did before running this test.

 Check the bug tracking system. Are there similar failures?
Maybe you can find a pattern.

 Find ways to affect timing of the program or devices, slow
down, speed up.

 Talk to the programmer and/or read the code.

RAB–29

Non-Reproducible bugs
are reproducible

 Failures occur under certain conditions

 If you know the conditions, you can recreate a failure

 If you don’t know the critical conditions, you cannot
recreate the failure

 What are some reasons you cannot reproduce a failure?

RAB–30

Reasons for non-reproducible bugs

 Some problems have delayed effects:

 a memory leak might not show up until after you cut and paste
20 times.

 stack corruption might not turn into a stack overflow until you
do the same task many times.

 a wild pointer might not have an easily observable effect until
hours after it was mis-set.

 If you suspect that you have time-delayed failures, use
tools such as videotape, capture programs, debuggers,
debug-loggers, or memory meters to record a long series
of events over time.

RAB–31

Reasons for non-reproducible bugs

 The bug depends on the value of a hidden input variable.
 In any test, there are the variables that we think are

relevant, and there is everything else. If the data you think
are relevant don’t help you reproduce the bug, ask what
other variables were set, and what their values were.

 Some conditions are hidden and others are invisible.
 You cannot manipulate them and so it is more difficult to

recognize that they’re present. You might have to talk with
the programmer about what state variables or flags get set
in the course of using a particular feature.

RAB–32

Reasons for non-reproducible bugs

 Some conditions are catalysts
 They make failures more likely to be seen. Example: low memory

for a leak; slow machine for a race. But sometimes catalysts are
more subtle, such as use of one feature that has a subtle
interaction with another.

 Some bugs are predicated on corrupted data
 They don’t appear unless there are impossible configuration

settings in the config files or impossible values in the database.
What could you have done earlier today to corrupt this data?

RAB–33

Reasons for non-reproducible bugs

 The bug might appear only at a specific time of day or day of
the month or year
 Look for week-end, month-end, quarter-end and year-end

bugs, for example.

 Programs have various degrees of data coupling
 When two modules use the same variable, oddness can happen

in the second module after the variable is changed by the first.
In some programs, interrupts share data with main routines in
ways that cause bugs that will only show up after a specific
interrupt.

RAB–34

Reasons for non-reproducible bugs

 The program may depend on one version of a DLL
 A different program loads a different version of the same DLL

into memory. Depending on which program is run first, the bug
appears or doesn’t.

 The bug depends on you doing related tasks in a specific
order.

 The bug is caused by an error in error-handling
 You have to generate a previous error message or bug to set

up the program for this one.

RAB–35

Reasons for non-reproducible bugs

 The program might be showing an initial state bug, such
as:

 The bug appears only the first time after you install the
program (so it happens once on every machine.)

 The bug appears once after you load the program but won’t
appear again until you exit and reload the program.

RAB–36

Reasons for non-reproducible bugs

 You forgot some of the details of the test you ran,
including the critical one(s) or you ran an automated test
that lets you see that a crash occurred but doesn’t tell you
what happened.

 The bug depends on a crash or exit of an associated
process.

 The program might appear only under a peak load, and
be difficult to reproduce because you can’t bring the
heavily loaded machine under debug control (perhaps it’s
a customer’s system).

RAB–37

Reasons for non-reproducible bugs

 On a multi-tasking or multi-user system, look for spikes in
background activity.

 The bug occurred because a device that it was attempting
to write to or read from was busy or unavailable.

 It might be caused by keyboard key bounce or by other
hardware noise.

RAB–38

Reasons for non-reproducible bugs

 The apparent bug is a side-effect of a hardware failure.

 A flaky power supply creates irreproducible failures.

 One prototype system had a high rate of irreproducible
firmware failures. Eventually, these were traced to a
problem in the building’s air conditioning. The test lab wasn’t
being cooled, no fan was blowing on the unit under test,
and prototype boards in the machine ran very hot. The
machine was failing at high temperatures.

RAB–39

Incomprehensible bug reports

 Programmers will not spend time on a bug if the bug
report:

 Has a strange and complex set of steps required to induce
the failure.

 Does not have enough information to know what steps are
required, and it will take a lot of work to figure them out.

 Is difficult to understand.

RAB–40

Reporting Errors

 As soon as you run into a problem in the software, fill out
a Problem Report form. In a well written report, you:

 Explain how to reproduce the problem.

 Analyze the error so you can describe it in a minimum number of
steps.

 Include all the steps.

 Make the report easy to understand.

 Keep your tone neutral and non-antagonistic.

 Keep it simple: one bug per report.

 If a sample test file is essential to reproducing a problem, reference
it and attach the test file.

RAB–41

The Problem Report Form

 A typical form includes many of the following fields
 Problem report number

 must be unique
 Reported by original reporter’s name

 Some forms add an editor’s name.
 Date reported

 date of initial report
 Program (or component) name

 the visible item under test
 Release number

 like Release 2.0
 Version (build) identifier

 like version C or version 20000802a

RAB–42

The Problem Report Form

 Configuration(s)
 h/w and s/w configurations under which the bug was

found and replicated
 Report type

 e.g. coding error, design issue, documentation mismatch,
suggestion, query

 Can reproduce
 yes / no / sometimes / unknown. (Unknown can arise,

for example, when the configuration is at a customer site
and not available to the lab).

 Severity
 assigned by tester. Some variation on small / medium /

large

RAB–43

The Problem Report Form

 Priority
 assigned by programmer/project manager

 Problem summary
 1-line summary of the problem

 Key words
 use these for searching later, anyone can add to key words at

any time
 Problem description and how to reproduce it

 step by step reproduction description
 Suggested fix

 leave it blank unless you have something useful to say
 Status

 Tester fills this in. Open / closed / resolved

RAB–44

The Problem Report Form

 Resolution
The project manager owns this field. Common resolutions include:

 Pending
 the bug is still being worked on.

 Fixed
 the programmer says it’s fixed. Now you should check it.

 Cannot reproduce
 The programmer can’t make the failure happen. You must add

details, reset the resolution to Pending, and notify the
programmer.

 Deferred
 It’s a bug, but we’ll fix it later.

RAB–45

The Problem Report Form

 Resolution – continued
 As Designed

 The program works as it’s supposed to.

 Need Info
 The programmer needs more info from you. She has probably

asked a question in the comments.

 Duplicate
 This is just a repeat of another bug report (XREF it on this report.)

Duplicates should not close until the duplicated bug closes.

 Withdrawn
 The tester withdrew the report.

RAB–46

The Problem Report Form

 Resolution version
 build identifier

 Resolved by
 programmer, project manager, tester (if withdrawn by

tester), etc.

 Resolution tested by
 originating tester, or a tester if originator was a non-

tester

 Change history
 date-stamped list of all changes to the record, including

name and fields changed.

RAB–47

The Problem Report Form

 Comments
 free-form, arbitrarily long field, typically accepts

comments from anyone on the project. Testers,
programmers, tech support (in some companies) and
others have an ongoing discussion of reproduction
conditions, etc., until the bug is resolved. Closing
comments (why a deferral is OK, or how it was fixed for
example) go here.

 This field is especially valuable for recording progress
and difficulties with difficult or politically charged
bugs.

 Write carefully. Just like e-mail and usenet postings,
it’s easy to read a joke or a remark as a flame. Never
flame.

RAB–48

Important Parts of the Report:
Problem Summary

 This one-line description of the problem is the most
important part of the report.

 The project manager will use it in when reviewing the list of
bugs that haven’t been fixed.

 Executives will read it when reviewing the list of bugs that
won’t be fixed. They might only spend additional time on
bugs with “interesting” summaries.

RAB–49

Problem Summary

 The ideal summary gives the reader enough information to
help her decide whether to ask for more information. It
should include:

 A brief description that is specific enough that the reader
can visualize the failure.

 A brief indication of the limits or dependencies of the bug
(how narrow or broad are the circumstances involved in this
bug)?

 Some other indication of the severity (not a rating but
helping the reader envision the consequences of the bug.)

RAB–50

Can You Reproduce The Bug?

 You may not see this on your form, but you should always provide
this information.
 Never say it’s reproducible unless you have recreated the bug.

(Always try to recreate the bug before writing the report.)

 If you’ve tried and tried but you can’t recreate the bug, say “No”.
Then explain what steps you tried in your attempt to recreate it.

 If the bug appears sporadically and you don’t yet know why, say
“Sometimes” and explain.

 You may not be able to try to replicate some bugs
 Example: customer-reported bugs where the setup is too

difficult to recreate.

RAB–51

How to Reproduce the Bug.

 First, describe the problem. Don’t rely on the summary to
do this - some reports will print this field without the
summary.

 Next, go through the steps that you use to recreate this
bug.
 Start from a known place (e.g. boot the program)

 Then describe each step until you hit the bug.

 NUMBER THE STEPS. Take it one step at a time.

 If anything interesting happens on the way, describe it. (You
are giving people directions to a bug. Especially in long
reports, people need landmarks.)

RAB–52

How to Reproduce the Bug

 Describe the erroneous behaviour and, if necessary,
explain what should have happened.
 Why is this a bug? Be clear.

 List the environmental variables (e.g. configuration) that
are not covered elsewhere in the bug tracking form.

 If you expect the reader to have any trouble reproducing
the bug (special circumstances are required), be clear
about them.

RAB–53

How to Reproduce the Bug

 It is essential to keep the description focused

 The first part of the description should be the shortest
step-by-step statement of how to get to the problem.

 Add “Notes” after the description such as:
 Comment that the bug won’t show up if you do step X

between step Y and step Z.
 Comment explaining your reasoning for running this test.
 Comment explaining why you think this is an interesting

bug.
 Comment describing other variants of the bug.

RAB–54

Keeping the Report Simple

 If you see two failures, write two reports.

 Combining failures creates problems:
 The summary description is typically vague. You say words

like “fails” or “doesn’t work” instead of describing the failure
more vividly. This weakens the impact of the summary.

 The detailed report is typically lengthened and contains
complex logic like: “Do this unless that happens in which
case don’t do this unless the first thing, and then the test
case of the second part and sometimes you see this but if
not then that”.

RAB–55

Keeping the Report Simple

 Even if the detailed report is rationally organized, it is longer
(there are two failures and two sets of conditions, even if
they are related) and therefore more intimidating.

 You’ll often see one bug get fixed but not the other.

 When you report related problems on separate reports, it is
a courtesy to cross-reference them.

RAB–56

Keeping it Simple:
Eliminate Unnecessary Steps (1)

 Sometimes it’s not immediately obvious what steps can be
dropped from a long sequence of steps in a bug.
 Look for critical steps -- Sometimes the first symptoms of a failure

are subtle.

 You have a list of the steps you took to show the error.
You’re now trying to shorten the list. Look carefully for
any hint of a failure as you take each step -- A few things
to look for:
 Error messages (you got a message 10 minutes ago. The program

didn’t fully recover from the error, and the problem you see now is
caused by that poor recovery.)

 Delays or unexpectedly fast responses.
 Display oddities, such as a flash, a repainted screen, a cursor that

jumps back and forth, multiple cursors, misaligned text, slightly
distorted graphics, etc.

RAB–57

Keeping it Simple:
Eliminate Unnecessary Steps (2)

 Sometimes the first indicator that the system is working differently
is that it sounds a little different than normal.

 An in-use light or other indicator that a device is in use when
nothing is being sent to it (or a light that is off when it shouldn’t
be).

 Debug messages—turn on the debug monitor on your system (if
you have one) and see if/when a message is sent to it.

 If you’ve found what looks like a critical step, try to
eliminate almost everything else from the bug report. Go
directly from that step to the last one (or few) that shows
the bug. If this doesn’t work, try taking out individual
steps or small groups of steps.

RAB–58

Put Variations After the Main Report

 Suppose that the failure looks different under slightly
different circumstances. For example, suppose that:

 The timing changes if you do two additional sub-tasks
before hitting the final reproduction step

 The failure won’t show up or is much less serious if you put
something else at a specific place on the screen

 The printer prints different garbage (instead of the garbage
you describe) if you make the file a few bytes longer

RAB–59

Put Variations After the Main Report

 This is all useful information for the programmer and you
should include it. But to make the report clear:

 Start the report with a simple, step-by-step description of
the shortest series of steps that you need to produce the
failure.

 Identify the failure. (Say whatever you have to say about it,
such as what it looks like or what impact it will have.)

 Then add a section that says “ADDITIONAL CONDITIONS”
and describe, one by one, in this section the additional
variations and the effect on the observed failure.

RAB–60

Unrealistic cases

 Some reports are inevitably dismissed as unrealistic
(having no importance in real use).

 If you’re dealing with an extreme value, do follow-up testing
with less extreme values.

 Check with people who might know the customer impact of
the bug:

 Technical marketing Technical support
 Human factors Documentation
 Network administrators Training
 In-house power users Maybe sales

RAB–61

It's not a bug, it’s a feature

 An argument over whether something is or is not a bug is
really an argument about the oracle you should use to
evaluate your test results.

 An oracle is the principle or mechanism
by which you recognize a problem.

 "Meets the specification" or "Meets the requirements" is a
heuristic oracle.

 If you know it’s "wrong" but you don't have a mismatch to
a spec, what can you use?

RAB–62

Some useful oracle heuristics

 Consistent with History
 Present function behaviour is consistent with past behaviour.

 Consistent with our Image
 Function behaviour is consistent with an image that the

organization wants to project.
 Consistent with Comparable Products

 Function behaviour is consistent with that of similar
functions in comparable products.

 Consistent with Claims
 Function behaviour is consistent with documented or

advertised behaviour.

RAB–63

Some useful oracle heuristics

 Consistent with User’s Expectations
 Function behaviour is consistent with what we think users

want.

 Consistent within Product
 Function behaviour is consistent with behaviour of

comparable functions or functional patterns within the
product.

 Consistent with Purpose
 Function behaviour is consistent with apparent purpose.

RAB–64

Editing Bug Reports

 Some groups have a second tester (usually a senior
tester) review reported defects before they go to the
programmer. The second tester:
 checks that critical information is present and intelligible

 checks whether she can reproduce the bug

 asks whether the report might be simplified, generalized or
strengthened.

 If there are problems, she takes the bug back to the
original reporter.

